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Abstract

Modified Adomian Decomposition Method (MADM) is used in this
article to solve higher order ordinary differential equations. Some
examples are proposed to show the ability of the methed for solving
this type of equations.
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1 Introduction

Consider the frist order ordinary differential equation [6]

y′ + P (x)y + f(x, y) = g(x), (1)

with boundary condition y(0) = A. Where A is constant, P (x) and g(x) are
given functions and f(x, y) is real function.
It is interesting to note that the eq.(1) was derived by the

e−
∫

P (x)dx d

dx
e
∫

P (x)dx(.) + f(x, y) = g(x). (2)

Adomian decomposition method (ADM) [3-5] is a numerical method for solv-
ing ordinary and partial nonlinear differential equations. This method was
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improved from the 1970 to the 1990s by George Adomian, chair of the center
for Applied Mathematics at the university of Georgia. The ADM has been
successfully applied to solve nonlinear equation in studying many interesting
problems arising in applied sciences and engineering [7,8]. We aim in this
article to solving higher order ordinary differential equations. We submit a
new modified through which we can solve ordinary differential equations of
different order with high efficiency.

2 Building Ordinary Differential Equations

of Higher Order

To derive the ordinary differential equations of different order, we use eq.(2)
and put

dn

dxn
e−
∫

P (x)dx d

dx
e
∫

P (x)dx(.) + f(x, y) = g(x), (3)

where n ∈ N . To determine such different equations of higher order we set
n to different values.
1. Placing n=0 in the eq.(3) gives us the first order ordinary differential
equation

y′ + p(x)y + f(x, y) = g(x),

2. Placing n=1 in the eq.(3) gives us the second order ordinary differential
equation [9]

y′′ + p(x)y′ + p′(x)y + f(x, y) = g(x),

3. Placing n=2 in the eq.(3) gives us the third order ordinary differential
equation

y′′′ + p(x)y′′ + 2p′(x)y′ + p′′(x)y + f(x, y) = g(x).

Continuing with the same procedure until n gives us the following general-
ization:

y(n+1) +
n∑

r=0

(
n

r

)
p(r)(x)y(n−r) + f(x, y) = g(x). (4)
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3 The Adomian Decomposition Method

Consider the higher order ordinary differential equations in the form eq.(4)

Ly = g(x)− f(x, y), (5)

where

L(.) =
dn

dxn
e−
∫

P (x)dx d

dx
e
∫

P (x)dx(.) + f(x, y) = g(x), (6)

and

L−1(.) = e−
∫

P (x)dx
∫ x

0
e
∫

P (x)dx
∫ x

0

∫ x

0

∫ x

0
...
∫ x

0︸ ︷︷ ︸
(n)

(.) dxdxdxdx...dx︸ ︷︷ ︸
(n+1)

.

By applying L−1 on (5), we have

y(x) = β(x) + L−1g(x)− L−1(f(x, y), (7)

such that
L(β(x)) = 0.

The method by Adomian is given the solution y(x) and the function f(x, y)
by infinite series

y(x) =
∞∑
n=0

yn(x), (8)

and

f(x, y) =
∞∑
n=0

An, (9)

where the elements yn(x) of the solution y(x) will be determined repeatable.
Specific algorithms were seen [1,2] to formulate Adomian polynomials. The
following algorithm:

A0 = F (y0), A1 = y1F
′(y0), A2 = y′2F (y0) +

1

2!
y21F

′′(y0),

A3 = y3F
′(y0) + y1y2F

′′(y0) +
1

3!
y31F

′′′(y0), (10)

....
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Can be used to build Adomian polynomials, when F (y) is any function. From
(7),(8) and (9) we have

∞∑
n=0

yn(x) = β(x) + L−1g(x)− L−1
∞∑
n=0

An. (11)

The component y(x) can be given by using Adomian decomposition method
as follows

y0 = β(x) + L−1g(x),

y(n+1) = −L−1An, n ≥ 0, (12)

thus

y0 = β(x) + L−1g(x), y1 = L−1A0, y2 = L−1A1, y3 = L−1A2.... (13)

From (10) and (13), we can determine the components yn, and hence the
series solution of y(x) in (8) can be immediately obtained.

4 Numerical Examples

Example 1.First, let us consider the third order ordinary differential equa-
tion

y′′′ − 3x2y′′ − 12xy′ − 6y = 6
(
−1 + 4 x+ 2x2 − 4x3 + 3x4

)
y4, (14)

y(0) = 1, y′(0) = 0, y′′(0) = −2,

obtained by placing n = 2, and P (x) = −3x2, in eq. (4). We put

L(.) =
d2

dx2
ex

3 d

dx
e−x

3

(.), (15)

so
L−1(.) = ex

3
∫ x

0
e−x

3
∫ x

0

∫ x

0
(.). (16)

Rewrite eq.(14) in an operator form

Ly = 6
(
−1 + 4 x+ 2x2 − 4x3 + 3x4

)
y4, (17)
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applying eq.(16) on both side of eq.(17) we get:

y(x) = 1− x2 + x3 − 3x5

5
+
x6

2
− 9x8

40
+
x9

6
+

...+ L−16
(
−1 + 4 x+ 2x2 − 4x3 + 3x4

)
y4, (18)

replace the decomposition series yn(x) for y(x) into (18) gives

∞∑
n=0

yn(x) = 1− x2 + x3 − 3x5

5
+
x6

2
− 9x8

40
+
x9

6
+

...+ L−16
(
−1 + 4 x+ 2x2 − 4x3 + 3x4

)
An), (19)

y0 = 1− x2 + x3 − 3x5

5
+
x6

2
− 9x8

40
+
x9

6
+ ...,

yn+1 = L−1(An), n ≥ 0, (20)

by using Taylor series and Adomain polynomials in eq.(10) we obtain

y0 = 1− x2 + x3 − 3x5

5
+
x6

2
− 9x8

40
+
x9

6
+ ...,

y1 = −x3 + x4 +
3x5

5
− 17x6

10
+

4x7

7
+

75x8

56
− 313x9

210
− 41x10

210
+ ...,

y2 =
x6

5
− 4x7

7
− 4x8

35
+

59x9

42
− 604x10

525
+ ...,

y3 =
−17x9

210
+

121x10

350
+ ....

The series solution by (MADM) is given by

y(x) = y0 + y1 + y2 + y3 = 1− x2 + x4 − x6 + x8 − x10 + ...,

that converges to the exact solution y(x) = 1
1+x2 .

Example 2. Next, let us consider the fourth order ordinary differential
equation

y′′′′ +
√

1 + xy′′′ +
3

2
√

1 + x
y′′ − 3

4 3
√

1 + x
y′ +

3

8 5
√

1 + x
y =

5
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ey − ex4

+
3
(
64x+ 240x2 + 280x3 + 105x4 + 64 (1 + x)

5
2

)
8 (1 + x)

5
2

, (21)

y(0) = y′(0) = y′′(0) = y′′′(0) = 0,

obtained by placing P (x) =
√

1 + x, k = 3, in eq.(4) and y(x) = x4 is the
solution of eq.(21). Eq.(21) in an operator form becomes

Ly = ey − ex4

+
3
(
64x+ 240x2 + 280x3 + 105x4 + 64 (1 + x)

5
2

)
8 (1 + x)

5
2

, (22)

where

L(.) =
d3

dx3
e

−2 (1+x)
3
2

3
d

dx
e

2 (1+x)
3
2

3 (.) (23)

and

L−1(.) = e
−2 (1+x)

3
2

3

∫ x

0
e

2 (1+x)
3
2

3

∫ x

0

∫ x

0

∫ x

0
(.)dxdxdxdx, (24)

applying eq.(25) on eq.(22) we find

y(x) = L−1(ey) +
23x4

24
+

x5

120
+

x6

480
− 11x7

6720
− x8

15360
− x9

8960
+

137x10

1075200
+ ...,

y0 =
23x4

24
+

x5

120
+

x6

480
− 11x7

6720
− x8

15360
− x9

8960
+

137x10

1075200
+ ...,

yn+1 = L−1(An), n ≥ 0. (25)

by using Taylor series with order 10 and eq.(10) we get,

y0 =
23x4

24
+

x5

120
+

x6

480
− 11x7

6720
− x8

15360
− x9

8960
+

137x10

1075200
+ ...,

y1 =
x4

24
− x5

120
− x6

480
+

11x7

6720
+

13x8

322560
+

17x9

145152
− 3667x10

29030400
+ ...,

y2 =
x8

40320
− x9

181440
− x10

907200
+ ....

y(x) = y0 + y1 + y2 = x4.

Example 3. Finally, let us consider the sixth order ordinary differential
equation

y(6) + sinxy(5) + 5 cosxy(4) − 10 sinxy(3) − 10 cosxy′′ + 5 sinxy′ + cosxy =
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x (5040− x13 + x2
(
4200− 420x2 + x4

)
cosx)

+35x2
(
72− 60x2 + x4

)
sinx+ y2, (26)

with
y(0) = y′(0) = y′′(0) = y′′′(0) = y′′′′(0) = y′′′′′(0) = 0,

obtained by placing P (x) = sinx, k = 5, in eq.(4) and y(x) = x7 is the
solution of eq.(26). Eq.(26) in an operator form becomes

Ly = x (5040− x13 + x2
(
4200− 420x2 + x4

)
cosx)

+35x2
(
72− 60x2 + x4

)
sinx+ y2, (27)

where

L(.) =
d5

dx5
ecosx

d

dx
e− cosx(.), (28)

and
L−1(.) = ecosx

∫ x

0
e− cosx

∫ x

0

∫ x

0

∫ x

0

∫ x

0

∫ x

0
(.)dxdxdxdxdxdx, (29)

applying eq.(29) on eq.(27) we find

y(x) = x7 − x20

27907200
+ ...+ L−1(y2),

y0 = x7 − x20

27907200
+ ...,

yn+1 = L−1(An), n ≥ 0. (30)

By using Taylor series and eq.(10) we get,

y0 = x7 − x20

27907200
+ ..., y1 =

x20

27907200
+ ....

y(x) = y0 + y1 = x7.

Conclusion

The MADM that introduced in this article and the results obtained from
the three examples have shown that MADM is more a powerful and easy
technique in finding an approximate solutions. As we noted in the frist
example, the result was very close to the exact solution. In examples 2,3 we
obtained the exact solution.
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