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1 Introduction

We consider the extension of functors between derived categories using 
tools of Yoneda embeddings and Grothendieck's “functor of points” con-
sidering the moduli space X, as equivalent to specifying of the functor
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R Ñ XpRq “ HompSpecR, Xq (1.1)

For other way, let k, be a field. The category Chaink, of chain complexes 
over k, admits a symmetric monoidal structure, given by the usual ten- 
sor product of chain complexes. A commutative algebra in the category 
Chaink, is called a commutative differential graded algebra over k. The
functor R Ñ XpRq, is symmetric monoidal, and determines a functor

ϕ : CAlgpChainkq Ñ CAlgpModkq � CAlgk, (1.2)
dg

We say that a morphism f : A‚ Ñ B‚, in CAlgk , is a quasi-isomorphism if
it induces a quasi-isomorphism between the underlying chain complexes 
of A‚, and B‚ . The functor ϕ, carries every quasi-isomorphism of commu- 
tative differential graded algebras to an equivalence in CAlgk.

Here can appear an extended version of Penrose transform in the context of 
the moduli problems, that is to say, considering the schemes in the context 
Modulik , can be constructed a functor that comes from a sufficiently gen- 
eralized Penrose transform such that the objects induced in an augmented 
algebra corresponds to geometrical objects of the functor Chaink, (in this 
case we need that these objects are CW- complexes) applied in the context 
of the vector bundles that come from the commutative differential graded 
algebra over k. If k, is a field of characteristic zero, then ϕ, induces an
equivalence

CAlgpChainkqrW´1s � CAlgk, (1.3)

where W, is the collection of quasi-isomorphisms, that in the context of 
the 8- categories of E8- algebras over k, will be the obtained from the 
ordinary categories of commutative differential graded k- algebras by for- 
mally inverting the collection of quasi-isomorphisms. The medullar func- 
tors of these transformations are functores obtained through the Yoneda 
embedding [2]. An classification of these functors is obtained using the 
equivalences between objects in three levels: the formal moduli problems, 
the integral transforms and the Zuckerman functors,where this last result 
useful in the representation problem of Lie algebras in the geometrical 
context planted by the Langlands program with their geometrical corre-
spondences.
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Likewise, are important the considerations on the affine algebraic varieties
that can be used to define algebras of objects that can transit from a CAlgk,
as could be an C´ algebra until an 8- algebra in Algn

aug to our extension to
a “quantum version” of an algebra Sym. This last can be got by a functor
Ext, considering the moduli problems between objects of an algebra, which
has been realized using commutative rings extended by a Yoneda algebra.

Then for the Yoneda embedding [1], considering the Yoneda algebra con-

truction foreseen in [2] and considering an 8- algebra in Alg
pnq
aug, we can

give an isomorphism between 8- categories and E8- rings of a 8- cate-
gory of spaces as SpecHsymT0A, @A P OPLG

pΣq, withΣ, a smooth projective
complex curve, which is the equivalence of two categories. This 8- cat-
egory of spaces can be extended to the non-commutative geometry and
deformed categories. This gives a scheme of the derived moduli problem
to the quantum version wanted. To it, is necessary consider the foreseen
in [3] on functoriality of moduli problems.

2 Moduli Problems for Commutative Rings.

Let R, be denote the category of commutative rings and S , the category
of sets. Doing extensive the use of Grothendieck's “functor of points”
philosophy: that is, we will identify a geometric object X (such as a
scheme) with the functor R Ñ S, represented by X, given by the for-
mula R Ñ HompSpecR,Xq.

We consider the following example.

Example 2. 1. We fix an integer n ě 0. We define a functor X : R Ñ S,
by letting FpRq, denote the set of all submodules M Ď Rn`1, such that the
quotient Rn`1{M, is a projective R- module of rank n(from which it follows
that M , is a projective R- module of rank 1). The functor X , is not repre-
sentable by a commutative ring. However, it is representable in the large
category Sch, of schemes. That is, for any commutative ring R, we have a
canonical bijection

(2.1)XpRq � HomSchpSpec R, Pnq,
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where Pn
� ProjZrχ0, ..., χns, denotes projective space of dimension n.

For our proposes, the action of a functor X : R Ñ S, is too restrictive.
We often want to study moduli problems X, which assign to a commu-
tative ring R, some class of geometric objects which depend on R. The
trouble is that this collection of geometrical objects is naturally organized
into a category, rather than a set. This motivates the following definition:

Def. 2. 1. Let Gpd, denote the collection of grupoids, that is to say cate-
gories in which every morphism is an isomorphism. We regard Gpd, as a 2-
category, that is to say, morphisms are given by functors between grupoids
and 2- morphisms are given by natural transformations (which are auto-
matically invertible). A classical moduli problem is a functor X : RÑ Gpd.

Every set S, can be regarded as a grupoid by setting

HomSpx, yq “

"

pidxq, if x “ y
∅, if x , y

*

(2.2)

This construction allows us to identify the category S, with a full subcat-
egory of the 2- category Gpd. In particular, every functor X : R Ñ S, can
be identified with a classical moduli problem in the sense of the definition
2. 1.

Example 2.2. For every commutative ring R, let XpRq, be the category of
elliptic curves E Ñ Spec R (morphisms in the category XpRq, are given by
isomorphisms of elliptic curves). Then F, determines a functor R Ñ Gpd,
and can therefore be regarded as a moduli problem in the sense of the
definition 2. 1. This moduli problem cannot be represented by a com-
mutative ring or even by a scheme, that is to say, for any scheme Y, the
space HomSchpSpecR,Yq, is a set. In particular if we remember the space
HomSchpSpecR,Yq as a grupoid, every object has a trivial automorphism
group. In contrast, every object of XpRq, has a non-trivial automorphism
group, that is to say, every elliptic curve admits a nontrivial automorphism,
given by multiplication by -1.

 

IJRDO - Journal of Mathematics                             ISSN: 2455-9210

Volume-6 | Issue-3 | March,2020 4



Nevertheless, the moduli problem, is representable if we work not in the
category of schemes but yes in the larger 2- category StDM, of Deligne-
Mumford stacks. More precisely, there exists a Deligne-Mumford stackME11

(the moduli stack of elliptic curves) for which there is a canonical equivalence
of categories

XpRq � HomStDM
pSpecR,ME11q, (2.3)

for every commutative ring R.

3 Rings and their Spectrums.

Let C , be the category of all topological spaces and let homπ , be the collec-
tion of weak homotopy equivalences. We will refer to C rW´1s, as the 8-
category of spaces and denote it by S . We describe the object of C , as the
CW complexes [4], and whose property between CW complexes is:

(a) The objects of C , are CW complexes.
(b) For every pair of CW complexes X, and Y, we let HomC pX,Yq, denote
the space of continuous maps from X, to Y, (endowed with the compact-
open topology).

The role of C , in the theory of 8- categories is analogous to the ordi-
nary category of sets in classical category theory. For example, for any 8-
category C , one can define a Yoneda embedding [1]

j : C Ñ FunpC top,S q, (3.1)

given explicitly by

jpCqD “ HomC pD,Cq P S , (3.2)

In this research, we are interested in the 8-category analogous more alge-
braic structures like commutative rings (see the Table 1).
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Classical Structure 8- categorical Analogue

Set Topological Space
Category 8- category
Abelian Group Spectrum
Commutative Ring E8- Ring
Ring of Integers Z Sphere Spectrum S

Table 1: Analogies[5]

To every E8- ring R, we can associate an 8- category ModRpSpq, of R- mod-
ules spectra, that is to say, modules over R, in the 8- category of spectra. If M,
and N, are R- modules spectra, we will denote the space HomModRpSpqpM,Nq,
as their applications space.

Motivated for the analogies given in the table 1, we can give the following
definition:

Def. 3. 1. A derived moduli problem is a functor X, from the 8- cat-
egory CAlg(Sp), of E8- rings to the 8- category C , of spaces.

4 Derived Moduli Problems and their Dualities:

Main Results

Let A,B P Algpnq
aug. Let X P Modulin, the formal En- moduli problems on k.

Let ΦRF, GΨR, @ R, the functors defined and determined by the theorem
6. 1, @ R , a k- module that is an A- module. Then the isomorphism that
represent these functors, are translated in the equivalences of 8- categories:

Modulin
ΦRF

ÐÝÝ Algpnq
aug,

ÝÝÑ
GΨR

(4.1)

which is true by the theorem 6. 1.[5-7]
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We consider the following definition to establish the existence of the ad-
junct left and right functors F, G, that appear by integral transforms that
are involved in the k- modules level [6].

Def. 4. 1. Let X P Modulin, be formal En- moduli problems over k,
and let A, be an augmented En- algebra over A. We will say that a natural
transformation

α : X Ñ ΨpAq, (4.2)

reflects X, if, for every augmented En- algebra B, over k, composition with
α, induces a homotopy equivalence:

HomAlgpnq
aug

pA,Bq Ñ HomModulinpX,ΨpBqq, (4.3)

We let Moduli0
n, denote the full sub-category of Modulin, spanned by these

formal En- moduli problems X, for which there exists a map (4. 2) which
reflects F. In this case, the map (4. 2) is well-defined up to canonical
equivalence, considering in particular that we can regard the construction
X ÞÑ A, as defining a functor

Φ : Moduli0
n Ñ Algn

aug, (4.4)

The functor Φ, is left adjunt to Ψ, in the sense that for every X P Moduli0
n,

and every B P Algpnq
aug, we have a canonical homotopy equivalence

HomModulinpX,ΨpBqq Ñ Hom
Alg

pnq
aug

pΦpXq,Bq, (4.5)

Indeed, since the functor Ψ : Algpnq
aug Ñ Modulin, preserves small limits,

one can deduce the existence of a left adjoint to Ψ, using the adjoint func-
tor theorem. In other words, it follows formally that Moduli0

n “ Modulin.
However, we will establish this equality by a more direct argument, which
will help us to compute with the functor Φ .

Also we consider the following property due to Koszul self-duality of
the little n- cubes operad [7, 8]:

Algpnq
aug (4.6)

1Φ´

� Modulin Ď FunpAlgpnq, S qsm

 

IJRDO - Journal of Mathematics                             ISSN: 2455-9210

Volume-6 | Issue-3 | March,2020 7



Theorem (F. Bulnes, I. Verkelov) 4. 1. Considering the functorsΦ,Ψ, with
the before properties (4. 1), (4. 3), (4. 5) and (4. 6), we have the following
scheme

HomModulinpX, SpecpBqq � HomCAlg(Sp)pB,S q, (4.7)

Proof. The demonstration is very immediate using the mentioned proper-
ties inside the hypothesis of the Theorem. However is necessary establish
some fine details on the acting of the functors F, G, that appear in the Koszul
duality application[8] and the relative details on the inverse limits to obtain
Spf, 1 in the context of “CRings”, CAlg(Sp).

Indeed, if A � limÐÝαAα, is a pro-object of Algpnq
sm , then

SpfA � limÝÑ
α

SpecA, (4.8)

then SpfA P Modulin.

For other side, considering A, a En- small algebra over k, and SpecA P

Modulin, denoting the representation functor Φ´1 : Algpnq
sm Ñ S , given by

the formula

pSpecAqpBq “ HomAlgpnq
sm

pA,Bq “ ΨpD AqpBq

“ GΨpBq “ GΨR P SpecB P FunpAlgpnq
sm ,S q,

To the functor F, the existence of an arbitrary element SpecB, that fall inside

of Algpnq
aug, needs the additional arguments as Moduli0

n “ Modulin, which

was mentioned before. Then the compute of the functorΨ , can be realized
easily .

1If A � lim
ÐÝα

Aα, is a pro-object of Algpnq
sm , we let the functor

SpfpAq : Algpnq
sm Ñ S ,

as the functor given by the formula

B ÞÑ HomPro(Algpnq
sm qpA,Bq � lim

ÝÑα
HomAlgpnq

sm
pAα,Bq.
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Then by (4. 1) all equivalences are satisfied in the context of the mod-

uli schemes and “CRings”. Due to that the functor Φ : Modulin Ñ Algpnq
aug,

is faithful then is followed all the scheme (4. 7).

As was mentioned before, the left and right functors F,G, appear by the in-
tegral transforms that are involved in the k- modules level. If we consider
that these k- modules are DG{H- modules then the equivalences given by
the Penrose transform [9]

H0pX,Lλq � KerpŨ,QBRSTq, (4.9)

are translated in the equivalences [9, 10]:

MpDG{H ´ modules G ´ equivariantsq
ΦRF

ÐÝÝ MGpg,Hq,

ÝÝÑ
GΨR

(4.10)

which are translated in the isomorphism the Hecke categories [9]:

HG^ ⇆Mpg̃,Yq, (4.11)

where the Lie algebra g̃, is the loop extension of the loop algebra gptq.

We consider the role of C , in the theory of 8- categories as the analogous
to the ordinary category of sets in classical category theory and the Yoneda
embedding defined by (3. 1) and (3. 2) for any 8- category C . Then
in particular to a graded algebra H‚pBunG,D

sq, obtained from a Yoneda
embedding, and generated by one copy of H_, over H0

� CrOpLG
s, is had

that on a disk [2]:

Theorem (E. Frenkel, C. Teleman) 4. 2. The Yoneda algebra
ExtDspBunGqpD

s,Dsq, is abstractly A8- isomorphic to (the strictly skew-commutative
one) Ext‚

LocL
G
pOOpL

G
,OOpL

G
q.
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Considering a full subcategory of sheaves in C “ Coh(LocLG
q, then we

have:

H‚pgrrzss, g; Vcritq � Ω
‚rOpLG

pDqs, (4.12)

Then considering an A8- enhancement of (4.12), that is to say, an algebra

in Algpnq
aug, then we can give the isomorphism

H0pgrrzss; Vcritq � Ker(Bun˝G, Bq, (4.13)

which is the Penrose transform to a functor FunpDtop,S q. Here Bun˝
G “ X,

where X, is the flag variety as the “quantum” version of the construction
of an algebra symT.

Theorem (F. Bulnes) 4. 3. The integral transform of a functor in FunpDtop,S q,
is the functor Spec, of an algebra symT.

Proof. We consider the scheme given in (4. 7) with the considerations S “
pCalg

aug
k qopp, and B “ SymT Ă Calg

aug
k . Then an element in FunpDtop,S q,

is obtained applying an integral transform ΦRF, defined for moduli spaces
equivalence (4. 10) where is formally followed that Moduli0

n “ Modulin.
But ,this particular equality can be translated to an isomorphism between
categories where the functor ΦRF, image is a moduli stack given for a man-
ifold Y, which is the spectrum of some 8- algebra Sym, of CAlg

aug
k . But

this is true to a hypercohomology where their dimension is only 1 or 0,
to the quantum version of the corresponding cohomology space isomor-
phic to this hypercohomology [3]. FinallyΦRFpSymTq “ SpecXpSymTXq “

T_X “ Y, to Bun0
G “ X, being X, moduli stack that is a thick flag mani-

fold. Filtering X, stay us with the elements of X, of the cohomology space
HqpBunG, SymTq, where q “ 0, 1, only. ˛

Remarks. The before consider an arbitrary base stack with affine diag-
onal (not necessarily perfect). Then to describe integral transforms relative
to such a base, we will utilize the simple behavior of 8- categories of
sheaves under affine base change. Likewise corresponding modules of
sheaves satisfy in particular to D-modules:
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Derived Moduli Problems Moduli Stacks

X : RÑ Gpd Pre-stacks
D : pCAlg

aug
k qtop Ñ Liek T_BunLG

,T_BunG pHiggs bundlesq

X : Vect
dg
k Ñ CAlgk Pre-Stacks on CAlgk

X : CAlgsm
k Ñ C SpecSymTpBunGq, SpecSymTpBunLG

q “ Y
Calabi-Yau Manifold

C : Liek Ñ pCAlg
aug
k qopp SymBunLG

, SymBunG

Table 2: Derived Moduli Problems and their Moduli Stacks

(a) R, is a category of commutative rings. In some special cases, the
stackification can be described in terms of torsors for affine group
schemes or the generalizations.

(b) BunLG
, is a LG- bundle. The space T_BunLG

, is their corresponding
cotangent bundle.

5 Applications: Integrals to the field equation

d(da) “ 0, [3].

We consider the integrals of the cohomological class H0pgrrzss; Vcritq �
Ker(Bun˝G, Bq, which represent a solution to the field equation Isomdh “
0. Their integrals are those whose functors image will be in
SpecHSymTpOPlGpDqq, where OPLG

pDq, is the variety of opers on the for-
mal disk D, or neighborhood of all point in a surface Σ, in a complex
Riemannian manifold M. Its used to exhibit a short classification of co-
cycles of coherent D- modules and their re-interpretation in field theory as
D- branes. The corresponding moduli stack are Higgs bundles.
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