Multipliers in semihoops

Ting Qian ${ }^{*, a}$, Wei Wang ${ }^{b}$, Mei Wang ${ }^{c}$
${ }^{a}$ School of science, Xi'an Shiyou University, Xi'an, 710065, China
${ }^{b}$ Department of Basic Courses, Shaanxi Railway institute, WeiNan, 714000, P.R. China
${ }^{b}$ School of Mathematics and Statistics, Weinan Normal University, Weinan 714099, P.R. China

Abstract

Semihoops play an important role in the study of fuzzy logic based on left continuous t-norms. In this paper, we introduce the notion of multipliers in semihoops and investigate some related properties of them. Also, we discuss the relations between multipliers and closure operators in semihoops. Moreover, we focus on algebraic structures of the set $I M(L)$ of all implicative multipliers in semihoops and obtain that $I M(L)$ forms a Heyting algebra, when L is an $M T L$-algebra.

Keywords: Semihoop; multipliers; closure operator

1. Introduction

Much of human reasoning and decision making is based on an environment of imprecision, uncertainty, incompleteness of information, partiality of truth and partiality of possibility-in short, on an environment of imperfect information. Hence how to represent and simulate human reasoning become a crucial problem in information science field. For this reason, various logical algebras have been proposed as the semantical systems of non classical logic systems, for example, MV-algebras, BL-algebras, MTLalgebras, residuated latticese, hoops and semihoops. Among these logical algebras, semihoops [1] are very basic algebraic structures and contain all logical algebras based on residuated lattices. Semihoops are generalizations of hoops which were introduced by Bosbach. In the last few years, the theory of hoops has been enriched with deep structure theorems[2, 3, 4, 5, 6, 7]. Many of these results have a strong impact with fuzzy logics. In particular, from the structure theorem of finite basic hoops, one obtains an elegant short proof of the completeness theorem for propositional basic logic, which introduced by Hájek [8]. As a more general structure, a semihoop is a hoop without the condition $x \odot(x \rightarrow y)=y \odot(y \rightarrow x)$. It follows that a semihoop does not satisfy the divisibility condition $x \wedge y=x \odot(x \rightarrow y)$. Compared to hoops contains all algebraic structures that induce by continuous t-norms [10], semihoops contains all algebraic structures that induce by left continuous t-norms. Therefore, semihoops play an important role in studying fuzzy logics and the related algebraic structures.

The notion of multipliers, introduced from the analytic theory, is helpful for studying algebraic structures and properties in algebraic systems. Multipliers in a commutative semigroup $(A, *)$ were introduced by Larsen[11], which was defined by a function f from A into A such that $f(x) * y=x * f(y)$ for all $x, y \in A$. Consequently, the notion of multipliers has been extended to distributive lattices[12, 13], $B E$ algebras[14], d-algebras[15] and $B L$-algebras[16]. In particular, A. Borumand Saeid[16] introduced a multiplier in $B L$-algebras L by a function f from L into L such that $f(x \rightarrow y)=x \rightarrow f(y)$ for all $x, y \in L$ and used multipliers to study the algebraic structures of MV-center of BL-algebras. As we have mentioned in the above, obstinate fifilters have been widely studied on BL-algebras, residuated lattices and MV-algebras, etc. All the above mentioned algebraic structures are the special case of semihoops. In fact, semihoops are the widest possible residuated structure. Therefore, it is interesting to study the multipliers on semihoops for providing a more general algebraic foundation for inference rule in fuzzy logic based on left continuous t-norms. This is the motivation for us to investigate multipliers on semihoops.

[^0]
2. Preliminaries

In this section, we summarize some definitions and results about semihoops which will be used in the following sections.

Definition 2.1. [2, 10] An algebra $(L, \wedge, \odot, \rightarrow, 1)$ of type (2,2,2,0) is called a semihoop if it satisfies the following conditions:
(1) $(L, \wedge, 1)$ is a \wedge-semilattice with upper bounded 1 ,
(2) $(L, \odot, 1)$ is a commutative monoid,
(3) $(x \odot y) \rightarrow z=x \rightarrow(y \rightarrow z)$, for all $x, y, z \in L$.

In what follows, for any $x \in L$, we define $x^{0}=1$ and $x^{n}=x^{n-1} \odot x$ for any natural number n.
On a semihoop L, we define $x \leq y$ if and only if $x \rightarrow y=1$ for all $x, y \in L$. It is easy to check that \leq is a partial order relation on L and for all $x \in L, x \leq 1$. Moreover, an algebra L is a bounded semihoop if L is a semihoop and there exists an element $0 \in L$ such that $0 \leq x$ for all $x \in L$. In a bounded semihoop L, we define the negation $*: x^{*}=x \rightarrow 0$ for all $x \in L$. If $x \odot x=x$, that is, $x^{2}=x$ for all $x \in L$, then the semihoop L is said to be idempotent. It is easy to check that an idempotent semihoop is equivalent to a Brouwerian semilattice [17]. In this work, unless mentioned otherwise, $(L, \wedge, \odot, \rightarrow, 0,1)$ will be a bounded semihoop, which will often be referred by its support set L.

Proposition 2.2. [2, 3, 5, 6, 7, 9] In any semihoop L, the following properties hold: for any $x, y, z \in L$,
(1) $x \leq y \rightarrow x$,
(2) $x \rightarrow 1=1$,
(3) $1 \rightarrow x=x$,
(4) $x \leq y \Rightarrow x \rightarrow z \geq y \rightarrow z$,
(5) $x \leq y \Rightarrow z \rightarrow x \leq z \rightarrow y$,
(6) $x \rightarrow(y \rightarrow z)=y \rightarrow(x \rightarrow z)$,
(7) $x \odot y \leq z$ iff $x \leq y \rightarrow z$,
(8) $x \odot y \leq x, y$,
(9) $x \odot y \leq x \wedge y$,
(10) $x \rightarrow y \leq(z \rightarrow x) \rightarrow(z \rightarrow y)$,
(11) $x \rightarrow y \leq(y \rightarrow z) \rightarrow(x \rightarrow z)$,
(12) $(x \rightarrow y) \odot(y \rightarrow z) \leq x \rightarrow z$.

Proposition 2.3. [2, 3] In any bounded semihoop L, the following properties hold: for any $x, y, z \in L$,
(1) $0^{*}=1,1^{*}=0$,
(2) $x \leq y \Rightarrow x^{*} \geq y^{*}$,
(3) $x \odot x^{*}=0$.

3. Multipliers in semihoops

In the section, we introduce the notion of implicative multipliers in semihoops and investigate some related properties of such operators. Also the algebraic structure of the set $I M(L)$ of all implicative multiplier in semihoops be studied.

Definition 3.1. Let L be a semihoop. A mapping $f: L \rightarrow L$ is called a implicative multiplier on L if it satisfies the following condition:

$$
f(x \rightarrow y)=x \rightarrow f(y)
$$

For any implicative multiplier f on L, the kernel of f is the set $\operatorname{Ker}(f)=\{x \in L \mid f(x)=1\} . f$ is called faithful if $\operatorname{Ker}(f)=1$.

Now, we present some examples of implicative multipliers in semihoops.

Example 3.2.

(1) Obvious, $i d_{L}$ is a implicative multiplier in semihoop L.
(2) Let L be a semihoop and $f(x)=1$, for any $x \in L$. Then f is a implicative multiplier in L. We denoted this mapping by 1_{f}.
(3) $f_{p}(x)=p \rightarrow x$ is a implicative multiplier in every semihoop L, where $p \in L . f_{p}(x)$ is called the principle implicative multiplier in L.
(4) Let L_{1}, L_{2} be two semihoops. Then $L_{1} \times L_{2}$ is also a semihoop w.r.t. the point-wise operations (such as $:(a, b) \rightarrow(c, d)=(a \rightarrow c, b \rightarrow d))$. If we define two maps $f, g: L_{1} \times L_{2} \rightarrow L_{1} \times L_{2}$ by $f(x, y)=(x, 1)$ and $g(x, y)=(1, y)$, for any $(x, y) \in L_{1} \times L_{2}$. One can easily check that f and g are implicative multipliers in $L_{1} \times L_{2}$ w.r.t. the point-wise operations.
(5) Let $L=\{0, a, b, 1\}, 0<a<b<1$ and \odot, \rightarrow define as follows:

\odot	0	a	b	1
0	0	0	0	0
a	0	a	a	a
b	0	a	b	b
1	0	a	b	1

\rightarrow	0	a	b	1
0	1	1	1	1
a	0	1	1	1
b	0	a	1	1
1	0	a	b	1

Then $(L, \wedge, \odot, \rightarrow, 0,1)$ is a semihoop. Now, we define a map f on L as follows:

$$
f(x)=\left\{\begin{array}{ll}
a, & x=0 \\
b, & x=b \\
1, & x=a, 1
\end{array} .\right.
$$

We have f is a implicative multiplier in L but not faithful.
Next, we present some properties of implicative multipliers in semihoops.
Proposition 3.3. Let f be a implicative multiplier in semihoop L. Then the follows hold: for any $x, y \in L$,
(1) $f(1)=1$,
(2) $x \leq y$ implies $x \leq f(y)$,
(3) $x \leq f(x)$,
(4) $f(x) \rightarrow y \leq x \rightarrow y \leq x \rightarrow f(y)$ and $f(x) \rightarrow y \leq f(x) \rightarrow f(y) \leq x \rightarrow f(y)$,
(5) $(f(x))^{*} \leq x^{*} \leq f\left(x^{*}\right)$. In particular, if $f(0)=0$, then $f\left(x^{*}\right)=x^{*}$,
(6) if f is faithful, then $f(x)=x$.

Proof.

(1) Obvious, $0 \rightarrow x=1$ for any $x \in L$. Then $f(1)=f(0 \rightarrow x)=0 \rightarrow f(x)=1$ implies $f(1)=1$.
(2) If $x \leq y$, then $x \rightarrow y=1$, and hence $f(x \rightarrow y)=x \rightarrow f(y)=1$, which implies $x \leq f(y)$.
(3) It is straightforward from item (2).
(4) From Proposition 3.3(3), we have $f(x) \rightarrow y \leq x \rightarrow y \leq x \rightarrow f(y)$ and $f(x) \rightarrow y \leq f(x) \rightarrow f(y) \leq$ $x \rightarrow f(y)$.
(5) It is straightforward from item (4).
(6) Since $f(f(x) \rightarrow x)=f(x) \rightarrow f(x)=1$ and f is faithful, we have $f(x) \rightarrow x=1$ implies $f(x) \leq x$. Together with item (3), thus $f(x)=x$.

Theorem 3.4. Let f be a implicative multiplier in semihoop L. Then the follow statements are equivalent:
(1) $f(x) \rightarrow x=1$;
(2) f is an identity mapping;
(3) f satisfying the following conditions:
(i) $f^{2}=f$,
(ii) $f(x \rightarrow y)=f(x) \rightarrow f(y)$,
(iii) $f^{2}(x) \rightarrow y=f(x) \rightarrow f(y)$;
(4) $f(x) \rightarrow y=x \rightarrow f(y)$;
(5) f is faithful.

Proof. The equivalence between (1) and (2) are obvious.
(2) \Rightarrow (3) Obviously.
(3) \Rightarrow (4) $x \rightarrow f(y)=f(x \rightarrow y)=f(x) \rightarrow f(y)=f^{2}(x) \rightarrow y=f(x) \rightarrow y$.
(4) \Rightarrow (2) Let $x=1$. Then $f(1) \rightarrow y=1 \rightarrow f(y)$, i.e., $f(y)=y$.

From Proposition 3.3(6), the equivalence between (2) and (5) are obvious.
Definition 3.5. Let f be a implicative multiplier in semihoop L. Then f is called:
(1) an isotone implicative multiplier if $x \leq y$ implies $f(x) \leq f(y)$, for any $x, y \in L$.
(2) an idempotent implicative multiplier if $f(f(x))=f(x)$ (that is, $f^{2}=f$), for any $x \in L$.

Example 3.6.

(1) Let $L=\{0, a, b, c, 1\}$ be a chain, where $0<a<b<c<1$. Define operations \odot and \rightarrow as follows:

\odot	0	a	b	c	1						
0	0	0	0	0	0		\rightarrow	0	a	b	c
	0	1	1	1	1	1					
a	0	a	a	a	a		a	0	1	1	1
b	0	a	a	a	b		b	0	c	1	1
c	1										
c	0	a	a	c	c		c	0	b	b	1
1	0	a	b	c	1		1	0	a	b	c
1	1										

Then $(L, \wedge, \odot, \rightarrow, 0,1)$ is a semihoop that is not divisible (because $b=b \wedge c \neq c \odot(c \rightarrow b)=c \odot b=a)$. Now, we define a map f on L as follows:

$$
f(x)= \begin{cases}0, & x=0 \\ b, & x=a, b . \\ 1, & x=1, c\end{cases}
$$

One can easily check that f is an isotone implicative multiplier in L. Also, f is idempotent.
(2) Let $L=\{0, a, b, 1\}, 0<a<b<1$ and \odot, \rightarrow define as follows:

\odot	0	a	b	1
0	0	0	0	0
a	0	0	a	a
b	0	a	b	b
1	0	a	b	1

\rightarrow	0	a	b	1
0	1	1	1	1
a	a	1	1	1
b	0	a	1	1
1	0	a	b	1

Then $(L, \wedge, \odot, \rightarrow, 0,1)$ is a semihoop. One can easily check that the map $f_{a}(x):=a \rightarrow x$ on L is an isotone implicative multiplier, but not idempotent.

In fact, there exist implicative multipliers that are not isotone. For example, the multipliers in Example 3.2(5).

Proposition 3.7. Let f be a implicative multiplier in semihoop L and f preserves \rightarrow. Then f is isotone.
Proof. If f is a preserves implicative multiplier in semihoop L and $x \leq y$, then $1=f(x \rightarrow y)=f(x) \rightarrow$ $f(y)$, that is, $f(x) \leq f(y)$. Thus f is isotone.

In general, the convert of Proposition 3.7 is not true. For example, assume L is a semihoop of Example 3.6(2). Then $f_{a}(x)=a \rightarrow x$ is an isotone implicative multiplier in semihoops L. Put $x=a, y=0$, then $f_{a}(a \rightarrow 0)=f_{a}(a)=a \rightarrow a=1$. Meanwhile, $f_{a}(a) \rightarrow f_{a}(0)=(a \rightarrow a) \rightarrow(a \rightarrow 0)=1 \rightarrow a=a$. Thus $f_{a}(a \rightarrow 0) \neq f_{a}(a) \rightarrow f_{a}(0)$.

Proposition 3.8. Let f be a closure operator in semihoop L and f preserves \rightarrow. Then f is a implicative multiplier in L.

Proof. Since f is preserves \rightarrow, together with Proposition 3.3(3), we obtain that $f(x \rightarrow y)=f(x) \rightarrow$ $f(y) \leq x \rightarrow f(y)$. On the other hand, $x \rightarrow f(y) \leq f(x \rightarrow f(y))=f(x) \rightarrow f^{2}(y)=f(x) \rightarrow f(y)=f(x \rightarrow$ y). Therefore f is a implicative multiplier in L.

Proposition 3.9. Let f be an isotone implicative multiplier in semihoop L and $f^{2} \leq f$. Then f is a closure operator on L.

Proof. From Proposition 3.3(3) and $f^{2} \leq f$, we have $f^{2}=f$. Since f is an isotone multiplier, we obtain that f is a closure operator on L.

We denote the set of all implicative multipliers in semihoop L by $I M(L)$. Let $f_{1}, f_{2} \in I M(L)$. Then we define $f_{1} \sqcap f_{2}: L \rightarrow L$ by $\left(f_{1} \sqcap f_{2}\right)(x)=f_{1}(x) \wedge f_{2}(x), f_{1} \sqcup f_{2}: L \rightarrow L$ by $\left(f_{1} \sqcup f_{2}\right)(x)=f_{1}(x) \vee f_{2}(x)$, $f_{1} \circ f_{2}: L \rightarrow L$ by $\left(f_{1} \circ f_{2}\right)(x)=f_{1}\left(f_{2}(x)\right), f_{1} \leq f_{2}$ by $f_{1}(x) \leq f_{2}(x)$ for any $x \in L$. Therefore the following results hold.

Theorem 3.10. Let f_{1}, f_{2} are two implicative multipliers in semihoop L. Then
(1) $f_{1} \circ f_{2}$ is a implicative multiplier in L;
(2) $f_{1} \sqcap f_{2}$ is a implicative multiplier in L;
(3) $\left(M(L), \circ, i d_{L}\right)$ is a monoid, where $i d_{L}$ is an identity mapping;
(4) L is an MTL-algebra implies $f_{1} \sqcup f_{2}$ is a implicative multiplier in L.

Proof.

(1) Since $\left(f_{1} \circ f_{2}\right)(x \rightarrow y)=f_{1}\left(x \rightarrow f_{2}(y)\right)=x \rightarrow\left(f_{1} \circ f_{2}\right)(y)$, we have $f_{1} \circ f_{2}$ is a implicative multiplier in L.
(2) Since $\left(f_{1} \sqcap f_{2}\right)(x \rightarrow y)=f_{1}(x \rightarrow y) \wedge f_{2}(x \rightarrow y)=\left(x \rightarrow f_{1}(y)\right) \wedge\left(x \rightarrow f_{2}(y)\right)=x \rightarrow f_{1}(y) \wedge f_{2}(y)=$ $x \rightarrow\left(f_{1} \sqcap f_{2}\right)(y)$, which implies $f_{1} \sqcap f_{2}$ is a implicative multiplier in L.
(3) Obviously.
(4) If L is an MTL-algebra, then $\left(f_{1} \sqcup f_{2}\right)(x \rightarrow y)=f_{1}(x \rightarrow y) \vee f_{2}(x \rightarrow y)=\left(x \rightarrow f_{1}(y)\right) \vee\left(x \rightarrow f_{1}(y)\right)=$ $x \rightarrow f_{1}(y) \vee f_{2}(y)=x \rightarrow\left(f_{1} \sqcup f_{2}\right)(y)$, thus $f_{1} \sqcup f_{2}$ is a implicative multiplier in L.

Theorem 3.11. Let L be an MTL-algebra. Then $\left(\operatorname{IM}(L), \sqcap, \sqcup, \leq, \hookrightarrow, i d_{L}, 1_{f}\right)$ forms a Heyting algebra (where $\left(f_{1} \hookrightarrow f_{2}\right)(x):=\sqcup\left\{f \mid f_{1} \sqcap f \leq f_{2}\right\}$).

Proof. Firstly, we show that $\left(\operatorname{IM}(L), \sqcap, \sqcup, i d_{L}, 1_{f}\right)$ is a bounded distributive lattice with $i d_{L}$ as the the smallest element and 1_{f} as the greatest element. For any $f_{1}(x), f_{2}(x), f_{3}(x) \in I M(L)$, together with Theorem 3.10(2) and (4), we have $f_{1} \sqcup\left(f_{2} \sqcap f_{3}\right)$ and $\left(f_{1} \sqcup f_{2}\right) \sqcap\left(f_{2} \sqcup f_{3}\right)$ are implicative multipliers in L. Moreover, $\left(f_{1} \sqcup\left(f_{2} \sqcap f_{3}\right)\right)(x \rightarrow y)=f_{1}(x \rightarrow y) \sqcup\left(f_{2}(x \rightarrow y) \sqcap f_{3}(x \rightarrow y)\right)=\left(x \rightarrow f_{1}(y)\right) \vee\left(\left(x \rightarrow f_{2}(y)\right) \wedge(x \rightarrow\right.$ $\left.\left.f_{3}(y)\right)\right)=\left[\left(x \rightarrow f_{1}(y)\right) \vee\left(x \rightarrow f_{2}(y)\right)\right] \wedge\left[\left(x \rightarrow f_{1}(y)\right) \vee\left(x \rightarrow f_{3}(y)\right)\right]=\left[f_{1}(x \rightarrow y) \vee f_{2}(x \rightarrow y)\right] \wedge\left[f_{1}(x \rightarrow\right.$ $\left.y) \vee f_{3}(x \rightarrow y)\right]=\left[\left(f_{1} \sqcup f_{2}\right)(x \rightarrow y)\right] \wedge\left[\left(f_{1} \sqcup f_{3}\right)(x \rightarrow y)\right]=\left[\left(f_{1} \sqcup f_{2}\right) \sqcap\left(f_{1} \sqcup f_{3}\right)\right](x \rightarrow y)$. Meanwhile, from Examples 3.2(1) and (2), we have that $i d_{L}$ and 1_{f} are implicative multipliers in semihoops. Together with Proposition 3.3(3), it is easily obtain that $i d_{L} \leq f \leq 1_{f}$ for any $f \in \operatorname{IM}(L)$, namely, $i d_{L}$ is the the smallest element and 1_{f} is the greatest element of $\operatorname{IM}(L)$. Thus $\left.I M(L), \sqcap, \sqcup, \leq, i d_{L}, 1_{f}\right)$ form a bound distributive lattice.

The following will check that for any multipliers $m, f, g \in I M(L), m \sqcap f \leq g$ if and only if $m \leq f \hookrightarrow g$. Obvious, $\left(f_{1} \hookrightarrow f_{2}\right)(x):=\sqcup\left\{f \mid f_{1} \sqcap f \leq f_{2}\right\}$ is well define. If $m \sqcap f \leq g$, then $m(x) \wedge f(x) \leq g(x)$ for any $x \in L$, that implies $m \in\{q \mid f \sqcap q \leq g\}$. So $m \leq \sqcup\{q \mid f \sqcap q \leq g\}$, namely, $m \leq f \hookrightarrow g$. Conversely, if $m \leq f \hookrightarrow g$, then $m(x) \leq(f \hookrightarrow g)(x)$ for any $x \in L$. Thus $m \leq \sqcup\{q \mid f \sqcap q \leq g\}$ implies $f \sqcap m \leq g$, that is, $m \sqcap f \leq g$. Therefore $\left(I M(L), \sqcap, \sqcup, \leq, \hookrightarrow, i d_{L}, 1_{f}\right)$ forms a Heyting algebra.

Acknowledgements

This study was funded by a grant of National Natural Science Foundation of China (11801440) and the Natural Science Basic Research Plan in Shaanxi Province of China (2019JQ-816) and Natural Science Foundation of Education Committee of Shannxi Province (19JK0653).

References

[1] Bosbach B, Halbgruppen K. Axiomatic und Aritmetik. Fundamenta Mathematicae, 1969, 64:257-287.
[2] Bosbach B, Halbgruppen K. Axiomatic und Quotienten. Fundamenta Mathematicae, 1970, 69:1-14.
[3] Wang J T, Xin X L, He P F, Monadic bounded hoops. Soft Computing, 2018, 22:1749-1762.
[4] Wang M, Xin X L, Wang J T, Implicative pseudo valuations on Hoops, Chinese Quarterly Journal of Mathematics, 2018,33:5160.
[5] Ferreirim I M A. On varieties and quasivarieties of hoops and their reducts. Ph. D. thesis, Vanderbilt University, Nashvile,Tennessee, 1992.
[6] Blok W J, Ferreirim I M A. hoops and their Implicational Reducts. Algebraic Methods in Logic and Computer Science, Banach Center Publications, 1993, 28:219-230.
[7] Blok W J, Ferreirim I M A. On the structure of hoops. Algebr Universalis, 2000, 43:233-257.
[8] Hájek P. Metamathematics of fuzzy logic. Trends in logic-Studia Logica Library, 1998, 4:155-174.
[9] He P F, Zhao B, Xin X L. States and internal states on semihoops. Soft Computing, 2017, 21:2941-2957.
[10] Esteva F, Godo L, Hájek P, Montagna F. hoops and fuzzy logic. Journal of Logic and Computation, 2003, 13(4):532-555.
[11] R. Larsen, An introduction to the theory of multipliers, Berlin: Springer-Verlag, 1971.
[12] Cornish. W.H, The Multiplier Extension of a Distributive Lattice, Journal Of Algebra, 32 (1974) 339-355.
[13] Schmid. J, Multipliers on distributive lattices and rings of quotients.I, Houston Journal of Mathematics, 6(3) (1980) 401-425.
[14] Kim. K. H, Multipliers in BE-Algebras, International Mathematical Forum, 6(17) (2011) 815-820.
[15] Chaudhry. M. A, Ali. F, Multipliers in d-algebras, World Applied Sciences Journal, 18(11) (2012) 1649-1653.
[16] Khorami. R.T, A. Borumand Saeid, Multiplier in BL-algebras, Iranian Journal of Science and Technology, 38A2 (2014) 95103.
[17] Borzooei R A, Kologani M A, Local and perfect semihoops. Journal of Intelligent \& Fuzzy Systems, 2015,29:223-234.

[^0]: *Corresponding author. qiant2000@126.com (T. Qian).

