On multipliers of hyper MV-algebras

Yongwei Yang, Yangyang He

School of Mathematics and Statistics, Anyang Normal University, Anyang 455000, China

Abstract

In the paper, we introduce the notion of multipliers of a hyper MV-algebra in the paper and investigate some properties of hyper MV-algebras in terms of multipliers. In addition, a set of equivalent conditions are established for two multipliers of a hyper MV-algebra to be equal in the sense of mappings. Further, some propositions of multipliers related with $Fix_d(M)$ are given.

Keywords: hyper MV-algebra; multiplier; hyper isotone; hyper regular multiplier

1. Introduction

Algebraic hyperstructures were introduced in 1934 by Marty [1] at 8th Congress of Scandinavian Mathematicians, which represent a natural extension of classical algebraic structures. Ghorbani et al. [2] applied the hyper structure to MV-algebras and introduced the concept of hyper MV-algebra which is a generalization of MV-algebra and investigated some related results. Torkzadeh and Ahadpanah [3] defined some hyper operations on hyper MV-algebras and introduced the notion of (weak)hyper MV-ideals in hyper MV-algebras. In order to find conditions that a hyper MV-algebra becomes an MV-algebra, Torkzadeh and Ghorbani [4] characterized hyper MV -algebras in which 0 is a scalar element. Xin et al. [5] introduced the notions of Riečan states and Bosbach states on a hyper MV-algebra and derive some properties of them. Hyperstructures were also applied other algebraic structures in recent years, such as hyper effect algebras [6, 7], hyper hoop-algebras [8] and hyper BCK-algebras [9], and some important results were obtained, such as

The concept of multiplier for distributive lattices was defined by Cornish [10]. Multipliers are used in order to give a non standard construction of the maximal lattice of quotients for a distributive lattice [11]. Tayebi Khorami and Borumand Saeid [12] introduced the notion of multiplier in BL-algebra and study relationships between multipliers and some special mappings, likeness closure operators, homomorphisms and (\otimes, \vee) -derivations in BL-algebras. [13] gave a necessary and sufficient condition for a Lau type binary operation defined by two mappings to be an algebra-operation in terms of multipliers. In 2013, Rao [14] introduced the notion of multipliers in a hypersemilattice and studied some properties of multipliers. Uzay and Firat [15] introduced the notion of multipliers of a hyper BCI-algebras.

Inspired by [14, 15], we introduce the notion of multipliers of a hyper MV-algebra in the paper. Then we investigate some properties of hyper MV-algebras in terms of multipliers. In addition, a set of equivalent conditions are established for two multipliers of a hyper MV-algebra to be equal in the sense of mappings. Also we gave some propositions of multipliers related with $Fix_d(M)$.

2. Preliminaries

To facilitate our discussion, we give some primary notions and previous results about MV-algebras and hyper MV-algebras in this section, which are necessary for the subsequent discussions.

An algebra $(M, \oplus, \neg, 0)$ of type (2, 1, 0) is called an MV-algebra if it satisfies the following axioms: for any $x, y, z \in M$,

 $(MV1) \quad x \oplus (y \oplus z) = (x \oplus y) \oplus z, \\ (MV2) \quad x \oplus y = y \oplus x,$

(MV3) $x \oplus 0 = x$, (MV4) $(x^*)^* = x$, (MV5) $x \oplus 0^* = 0^*$, (MV6) $(x^* \oplus y)^* \oplus y = (y^* \oplus x)^* \oplus x$.

A partial order \leq introduced on an MV-algebra *M* by defining $x \leq y$ if $x^* \oplus y = 0^*$, which makes *A* into a distributive lattice.

A hyperoperation on a nonempty set A is a mapping $\circ : A \times A \to P^{\star}(A) \setminus \{\emptyset\}$, where $P^{\star}(A)$ is the set of all the nonempty subsets of A. The couple (A, \circ) is called a hypergroupoid.

Definition 2.1. [2] A hyper MV-algebra $(M, \oplus, *, 0)$ is a non-empty set *M* endowed with a binary hyper operation \oplus , a unary operation * and a constant 0 satisfying the following conditions: for any $x, y, z \in M$,

(hMV1) $x \oplus (y \oplus z) = (x \oplus y) \oplus z$, (hMV2) $x \oplus y = y \oplus x$, (hMV3) $(x^*)^* = x$, (hMV4) $(x^* \oplus y)^* \oplus y = (y^* \oplus x)^* \oplus x$, (hMV5) $0^* \in x \oplus 0^*$, (hMV6) $0^* \in x \oplus x^*$, (hMV7) if $x \ll y$ and $y \ll x$, then x = y,

where $x \ll y$ is defined by $0^* \in x^* \oplus y$ and for every $A, B \subseteq M$, if there exist $a \in A$ and $b \in B$ such that $a \ll b$, then we define $A \ll B$. We define $1 := 0^*, x \otimes y := (x^* \oplus y^*)^*, x \oplus y := x \otimes y^* = (x^* \oplus y)^*, x \to y := (x \otimes y^*)^*$, and for every $A \subseteq M, A^* = \{a^* | a \in A\}$. Obviously, $x \ll y$ iff $0 \in x \oplus y$ or $1 \in x \to y$.

In what follows, unless otherwise specified, we denote a hyper MV-algebra $(M, \oplus, *, 0)$ by M. Let M be a a hyper MV-algebra. If A and B are nonempty subsets of M, we denote: for any $a, b, x \in M$,

(1)
$$x \circ A = \{x\} \circ A = \bigcup_{a \in A} x \circ a, A \circ x = A \circ \{x\} = \bigcup_{a \in A} a \circ x$$

(2) $A \circ B = \bigcup_{a \in A, b \in B} a \circ b,$

where $\circ \in \{\oplus, \ominus, \rightarrow\}$.

There exists a connection between hyper MV-algebras and Mv-algebras. MV-algebras are special cases of hyper MV-algebras. In fact, we have

- (1) If *M* is a hyper MV-algebra such that $x \oplus y$ is a singleton for any $x, y \in M$, then *M* is an MV-algebra.
- (2) Let *M* be an MV-algebra. Define a hyper operation \oplus' on *M* by $x \oplus' y = \{t \in M | 0 \le t \le x \oplus y\} = [0, x \oplus y]$ for any $x, y \in M$. Then $(M, \oplus', *, 0)$ is a hyper MV-algebra.

Now we state some primary properties of hyper MV-algebras in the following proposition.

Proposition 2.2. [2?, 3] Given a hyper MV-algebra $(M, \oplus, *, 0)$, for any $x, y, z \in M$ and for any nonempty subsets *A*, *B* and *C* of *M*, the following results hold:

- (1) $0 \ll x \ll 1, x \ll x,$ (2) $x \ll x \oplus y, A \ll A \oplus B,$ (3) $x \in x \oplus 0, x \in x \otimes 1, 0 \in x \otimes x^*, 0 \in x \otimes 0;$ (4) $x \in 1 \rightarrow x, 1 \in x \rightarrow x, 1 \in (1 \rightarrow x) \rightarrow x;$ (5) $0 \oplus 0 = \{0\}, 1 \otimes 1 = \{1\}, 1 \rightarrow 0 = \{0\};$ (6) $x \otimes y \ll x \ll x \oplus y \text{ and } A \otimes B \ll A \ll A \oplus B;$ (7) $(x \rightarrow y) \ll y \text{ and } (A \rightarrow B) \ll B;$ (8) $(A^*)^* = A \text{ and } A \rightarrow (B \rightarrow C) = B \rightarrow (A \rightarrow C);$ (9) $(A \oplus B) \oplus C = A \oplus (B \oplus C), (A \otimes B) \otimes C = A \otimes (B \otimes C);$ (10) $x \ll y$ implies $y^* \ll x^*$, and $A \ll B$ implies $B^* \ll A^*;$
- (11) $x \ll y$ implies $x \oplus z \ll y \oplus z$ and $x \otimes z \ll y \otimes z$;

- (12) $A \subseteq B$ implies $A \ll B$;
- (13) $A \ll B$ and $B \ll C$ implies $A \ll C$;
- (14) if $y \in x \oplus 0$, then $y \ll x$;
- (15) $x \otimes y \ll z$ if and only if $x \ll y \rightarrow z$.

Definition 2.3. [2] Let M_1 and M_2 be two hyper MV-algebras. A mapping $f: M_1 \to M_2$ is said to be a homomorphism, for any $x, y \in M_1$, if

$$f(0) = 0, f(x \oplus y) = f(x) \oplus (y)$$
 and $f(x^*) = f(x)^*$

where for any $A \subseteq M_1$, $f(A) := \{f(a) | a \in A\}$.

3. Multipliers of hyper MV-algebras

In this section, we define the notion of multiplier on a hyper MV -algebra, and present some characterizations of a multiplier.

Definition 3.1. Let M be a hyper MV-algebra, and $d: M \to M$ be a function. Then d is said to be a multiplier of M if it satisfies: for any $x, y \in M$,

$$d(x \otimes y) = d(x) \otimes y$$

Example 3.2. Let $M = \{0, b, 1\}$. Define a hyperoperation " \oplus " on *M* by the following table:

\oplus	0	b	1
0	{0}	{0,b}	{1}
b	{0,b}	{0,b,1}	{0,b,1}
1	{1}	$\{0,b,1\}$	{1}

Define a unary operation * as follows: $0^* = 1$, $1^* = 0$, $b^* = b$. Then $(M, \oplus, *, 0)$ is a hyper MV-algebra. And we have the following multiplication table:

\otimes	0	b	1
0	{0}	{0,b,1}	{0}
b	{0,b,1}	{0,b,1}	{b,1}
1	{0}	{b,1}	{1}

Define a map $d: M \to M$ as follows:

$$d(x) = \begin{cases} 0, & x = 0, \\ a, & x = b, \\ b, & x = 1. \end{cases}$$

Route calculations show that *d* is a multiplier of *M*.

Proposition 3.3. Let *d* be a multiplier of a hyper MV-algebra *M*. Then for any $x, y \in M$,

(1) $d(x \ominus y) = d(x) \ominus y;$ (2) $d(x \ominus d(x)) \ll 0;$

(3) $x \otimes d(y) = d(x) \otimes y$.

Proof. (1) For any $x, y \in M$, $d(x \ominus y) = d(x \otimes y^*) = d(x) \otimes y^* = d(x) \ominus y$.

(2) According to (1), we have $d(x \ominus d(x)) = d(x) \ominus d(x)$. Since $0 \in d(x) \ominus d(x) = d(x) \otimes (d(x))^*$ and $0 \ll 0$, then $d(x \ominus d(x)) \ll 0.$

(3)
$$x \otimes d(y) = d(y) \otimes x = d(y \otimes x) = d(x \otimes y) = d(x) \otimes y$$
.

Proposition 3.4. Let *d* be a multiplier of a hyper MV-algebra *M*. If *d* is idempotent, that is, $d^2(x) = d(x)$ for any $x \in M$, then $d(x \otimes y) = d(x) \otimes d(y)$, for any $x, y \in M$.

Proof. Suppose that *d* is an idempotent multiplier of *M*. For any $x, y \in M$,

$$d(x \otimes y) = d^2(x \otimes y) = d(d(x \otimes y)) = d(d(x) \otimes y) = d(y \otimes d(x)) = d(y) \otimes d(x) = d(x) \otimes d(y).$$

Definition 3.5. Let *M* be a hyper MV-algebra and $d: M \to M$ be a self-mapping.

(1) *d* is said to be regular if d(0) = 0;

(2) *d* is hyper isotone if $x \ll y$ implies $d(x) \ll d(y)$ for any $x, y \in M$.

Proposition 3.6. Let *d* be a regular multiplier of a hyper MV-algebra *M*. Then for any $x, y \in M$,

(1) $d(x) \ll x;$ (2) $d(x) \otimes d(y) \ll d(x \otimes y) \ll x \otimes y;$ (3) $d(x \ominus y) \ll d(x) \ominus d(y).$ (4) $d(x \ominus y) \ll x \ominus y.$

Proof. (1) Since $0 = d(0) \in d(x \otimes x^*) = d(x) \otimes x^*$, thus $d(x) \ll x$.

(2) According to (1) and Proposition 2.2, we have $d(x) \otimes d(y) \ll x \otimes d(y) = d(x \otimes y) \ll x \otimes y$.

(3) Since $d(y) \ll y$, then $y^* \ll (d(y))^*$ by Proposition 2.2, and so

$$d(x \ominus y) = d(x) \ominus y = d(x) \otimes y^* \ll d(x) \otimes (d(y))^* = d(x) \ominus d(y)$$

(4) Since $d(x) \ll x$, then $d(x \ominus y) = d(x) \ominus y \ll x \ominus y$.

Proposition 3.7. Let d be a regular multiplier of a hyper MV-algebra M. If d is an endomorphism, then d is hyper isotone.

Proof. Let $x, y \in M$ such that $x \ll y$. It follows that $0 \in x \ominus y$. Since d is both a regular multiplier and an endomorphism, then $0 = d(0) \in d(x \ominus y) = d(x) \ominus d(y)$, and so, $d(x) \ll d(y)$. Thus, d is hyper isotone.

Proposition 3.8. Let d_1 and d_2 be two multipliers of a hyper MV-algebra M. Then $d_1 \cdot d_2$ is also a multiplier of M, where $(d_1 \cdot d_2)(x) = d_1(d_2(x))$ for any $x \in M$.

Proof. Since d_1 and d_2 are multipliers of M, it follows that

$$(d_1 \cdot d_2)(x \otimes y) = d_1(d_2(x) \otimes y) = d_1(d_2(x)) \otimes y = (d_1 \cdot d_2)(x) \otimes y$$

for any $x, y \in M$. Thus, $d_1 \cdot d_2$ is a multiplier of M.

Definition 3.9. Let *d* be a multiplier of a hyper MV-algebra *M*. Define

$$Fix_d(M) = \Delta_d(M) \cup (\bigcup_{i \in I} A_i),$$

where $\Delta_d(M) := \{x \in M | d(x) = x\}$ and $d(A_i) = A_i$ for any $A_i \subseteq M$.

If *d* is an idempotent multiplier, then clearly $d(x) \in \Delta_d(M)$ for any $x \in M$.

Proposition 3.10. Let *d* be a multiplier of a hyper MV-algebra *M*. Then we have

(1) $\Delta_d(M) \subseteq \Delta_{d^2}(M);$

- (2) If $x \in M$ and $y \in \Delta_d(M)$, then $d(x \ominus y) = d(x) \ominus d(y)$;
- (3) If $x \in \Delta_d(M)$ and $y \in M$, then $x \otimes y \subseteq Fix_d(M)$ and $x \ominus y \subseteq Fix_d(M)$.

Proof. (1) For any $x \in \Delta_d(M)$, we have x = d(x). It follows that $d^2(x) = d(d(x)) = d(x) = x$, and so $x \in \Delta_{d^2}(M)$, therefore $\Delta_d(M) \subseteq \Delta_{d^2}(M)$.

(2) If $x \in M$ and $y \in \Delta_d(M)$, then $d(x \ominus y) = d(x) \ominus y = d(x) \ominus d(y)$.

(3) If $x \in \Delta_d(M)$ and $y \in M$, we have $d(x \otimes y) = d(x) \otimes y = x \otimes y$, and so $x \otimes y \subseteq Fix_d(M)$. It follows from Proposition 3.3 that $d(x \ominus y) = d(x) \ominus y = x \ominus y$, and therefore $x \ominus y \subseteq Fix_d(M)$.

Theorem 3.11. Let d_1 and d_2 be two idempotent multipliers of a hyper MV-algebra M such that $d_1 \cdot d_2 = d_2 \cdot d_1$. Then the following conditions are equivalent:

(1) $d_1 = d_2;$

(2) $d_1(M) = d_2(M);$

(3) $\Delta_{d_1}(M) = \Delta_{d_2}(M)$.

Proof. (1) \Rightarrow (2) Obviously.

(2) \Rightarrow (3) Assume that $d_1(M) = d_2(M)$. For any $x \in \Delta_{d_1}(M)$, we have $x = d_1(x) \in d_1(M) = d_2(M)$. Then there exists $y \in M$ such that $x = d_2(y)$. And $d_2(x) = d_2(d_2(y)) = d_2(y) = x$, so $x \in \Delta_{d_2}(M)$, it follows that $\Delta_{d_1}(M) \subseteq \Delta_{d_2}(M)$. Similarly, we can prove $\Delta_{d_2}(M) \subseteq \Delta_{d_1}(M)$. Thus $\Delta_{d_1}(M) = \Delta_{d_2}(M)$.

(3) \Rightarrow (1) Suppose that $\Delta_{d_1}(M) = \Delta_{d_2}(M)$. For any $x \in M$, since $d_1(x) \in \Delta_{d_1}(M) = \Delta_{d_2}(M)$, we get that $d_2(d_1(x)) = d_1(x)$. Similarly, $d_1(d_2(x)) = d_2(x)$. Then $d_1(x) = d_2(d_1(x)) = (d_2 \cdot d_1)(x) = (d_1 \cdot d_2)(x) = d_1(d_2(x)) = d_2(x)$, thus, $d_1 = d_2$.

Let $(M_1, \oplus_1, *_1, 0_1)$, $(M_2, \oplus_2, *_2, 0_2)$ be two hyper MV-algebras, and $M = M_1 \times M_2$. We define a hyper operation \oplus , a unary operation * and a constant 0 on M as follows:

$$(a_1, a_2) \oplus (b_1, b_2) = (a_1 \oplus_1 b_1, a_1 \oplus_2 b_2),$$

$$(a_1, a_2)^* = (a_1^{*_1}, a_2^{*_2}),$$

$$0 = (0_1, 0_2),$$

for any $(a_1, a_2), (b_1, b_2) \in M_1 \times M_2$, and a hyperorder \ll on M by

 $(a_1, a_2) \ll (b_1, b_2)$ iff $a_1 \ll_1 b_1, a_2 \ll_2 b_2$.

Then $(M, \oplus, *, 0)$ is a hyper MV-algebra, and we call it the product of hyper MV-algebras M_1 and M_2 .

Proposition 3.12. Let $(M, \oplus', *', 0')$ be a hyper MV-algebra, d_1 and d_2 be multipliers of M_1 . Then the product $d_1 \times d_2$ of d_1 and d_2 is a multiplier of $M \times M$, where

$$(d_1 \times d_2)(x, y) := d_1(x) \otimes' d_2(y),$$

for any $(x, y) \in M \times M$.

Proof. For any $x_1, x_2, y_1, y_2 \in M$, we get that

$$(d_1 \times d_2)((x_1, y_1) \otimes (x_2, y_2)) = (d_1 \times d_2)((x_1 \otimes' x_2, y_1 \otimes' y_2))$$

= $d_1(x_1 \otimes' x_2) \otimes' d_2(y_1 \otimes' y_2)$
= $d_1(x_1) \otimes' x_2 \otimes' d_2(y_1) \otimes' y_2$
= $(d_1(x_1) \otimes' d_2(y_1)) \otimes' (x_2 \otimes' y_2)$
= $(d_1 \times d_2)(x_1, y_1)) \otimes (x_2, y_2).$

Hence $d_1 \times d_2$ is a multiplier of $M \times M$.

Acknowledgements

The works described in this paper are partially supported by Research and Cultivation Fund Project of Anyang Normal University (No. AYNUKP-2018-B26) and Undergraduate Innovation Foundation Project of Anyang Normal University (No. ASCX/2019-Z112).

References

- [1] Marty F., Sur une generalization de la notion de groupe, 8th Congress Math. Scandinaves, Stockholm, 1934, 45–49.
- [2] Ghorbani S., Hasankhani A., Eslami E., Hyper MV-algebras, Set-Valued Mathematics and Applications, 2008, 2, 205-222.
- [3] Torkzadeh L., Ahadpanah A., Hyper MV-ideals in hyper MV-algebras, Mathematical Logic Quarterly, 2010, 56(1): 51-62.
- [4] Torkzadeh L., Ghorbani S., Some characterizations of hyper MV-algebras, Journal of Mahani Mathematical Research Center, 2012, 1(2): 147-161.
- [5] Xin X., He P., Fu Y., States on hyper MV-algebras, Journal of Intelligent & Fuzzy Systems, 2016, 31(3), 1299–1309.
- [6] Dvurečenskij A., HyčKo M., Hyper effect algebras, Fuzzy Sets and Systems, 2017, 326, 34-51.
- [7] Ji W., Hyper-operations in effect algebras, Soft Computing, 2019, 23, 4585–4592.
- [8] Borzooei R.A., Varasteh H.R., Borna K., Quotient hyper hoop-algebras, Italian Journal of Pure and Applied Mathematics, 2016, 36, 87–100.
- [9] Jun Y.B., Zahedi M.M., Xin X., et al., On hyper BCK-algebras, Italian Journal of Pure and Applied Mathematics, 2000, 8(8), 127–136.
- [10] Cornish W.H., The multiplier extension of a distributive lattice, Journal of Algebra, 1974, 32, 339–355.
- [11] Schmid J., Multipliers on distributive lattices and rings of quotients, Houston Journal of Mathematics, 1980, 6(3), 401-425.
- [12] Tayebi Khorami R., Borumand Saeid A., Multiplier in BL-algebras, Iranian Journal of Science and Technology (Sciences), 2014, 38(2), 95-103.
- [13] Takahasi S.E, Takagi H., Miura T., A characterization of multipliers of a lau algebra constructed by semisimple commutative banach algebras, Taiwanese Journal of Mathematics, 2016, 20(6), 1401-1415.
- [14] Rao M.S., Multipliers of hypersemilattices, International Journal of Mathematics and Soft Computing, 2013, 3(1), 29-35.
- [15] Uzay D.S., Firat A., On Multiplier of Hyper BCI algebras, Gazi University Journal of Science, 2019, 32(2), 660-665.