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Abstract 

In statistical inference, one of the basic problems is that of estimating functionals. This problem 

is considered in the nonparametric set-up. The quality of estimation depends on smoothness 

properties of the functional F. However, non smooth functionals lack some degree of properties 

traditionally relied upon in estimation. This highlights the reason why standard techniques fail to 

yield sharp results. In estimating non smooth functionals, the lower and upper bounds are 

constructed for the MiniMax Risk. When working in the context of MiniMax estimation, the 

lower bounds are important. A single- value MiniMax lower bound is established by applying 

the general lower bound technique based on testing two composite hypotheses. A vital step is the 

construction of two special priors and bounding the chi-square distance between two normal 

mixtures. An estimator is constructed using approximation theory and Hermite polynomials and 

is shown to be asymptotically sharp MiniMax when the means are bounded by a given value. 

 

Introduction 

In statistical inference, a sample is obtained from the population. A population is a set of units 

(usually people, objects, transactions or events) of interest in a study. It is the entire group of 

interest. The statistic obtained from a sample is used to estimate the population parameters. This 

statistic is called an estimator. Populations are characterized by parameters such as the mean and 

the variance. The corresponding quantities for a sample are called statistics. A statistic used to 

estimate the values of a parameter is called an estimator. An estimator is a function of the 

sample, while an estimate is the realized value that is obtained when a sample is actually taken. 

An estimator is denoted by a capital letter while the estimate is denoted by a small letter. A 

desirable estimator is the one which has a high probability of being near to the unknown 

parameter which it estimates. This is quantified by evaluating the probability that the estimator 

lies within a given range of the parameter. In many practical cases, it may not be possible to have 

all the information available about a certain population. For example, the distribution or certain 

parameters may be unknown. However, some information about a sample from a given 

population may be available. The information from the sample is therefore used to infer 

information about a population. For example, in a normal distribution, the probability of a 

measurement occurring which is more than two standard deviations away from either side of the 

mean is approximately one in twenty. The probability of a measurement occurring which is more 

than three standard deviations away from either side of the mean, is approximately three in a 
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thousand. The likelihood of such a measurement to occur is therefore very small. If such a 

measurement is found, the event is said to be unusual and it is referred as significant (S.M. Uppal 

et al, 2012). Nonparametric statistical procedures are applied when the distribution from which 

the sample is drawn is unknown (Lepski et al, 1999). If the distribution is known, parametric 

statistical procedures are used to obtain the estimators. These methods make more assumptions 

and if correct, accurate and precise estimates are produced (Bagdonavicious et al, 2011). 

However, if incorrect, these methods can be misleading. For this reason, they are not considered 

robust. Nonparametric methods use less information in their calculation and can be used on all 

types of data which are nominally scaled or are in rank form as well as interval or ratio scaled. 

Nonparametric procedures are easy to apply on a small sample size, which would demand the 

distributions to be known precisely in order for parametric tests to be applied. Furthermore, 

nonparametric tests often concern different hypotheses about population than do parametric tests 

(J.P Marques De sa’, 2007). Also in parametric statistics, the mean and standard deviation are 

two most commonly used to describe a normal distribution. However, they are of little value to 

exploratory data analysis since they are affected by extreme values and are not easily understood 

by people with less knowledge in statistics. Nonparametric statistics is therefore an excellent 

supplement to the conventional mean and standard deviation for the communication of statistical 

information to a non technical audience (Corder and Foreman, 2009).Estimators are obtained 

through a number of approaches such as Point estimation and Interval estimation. Point 

estimation involves the use of sample data to calculate a single value (statistic) which is to serve 

as a ‘best guess’ or ’best estimate’ of an unknown (fixed/random) population parameter. The 

methods used in Point estimation include: Method of moments, Maximum likelihood, Bayes’ 

estimators and best unbiased estimators. Interval estimation provide an interval within which the 

parameter should lie with certain degree of certainty. It is a statistical procedure that specifies 

statistical methods of using sample information to calculate two values C1 and C2 that forms the 

end points of the interval. The two limits calculated from the sample observations C1(x1, x2, ..., 

xn) and C2(x1, x2, ..., xn) and Pr[C1 ≤ θ ≤ C2] = 1 − α. Where α is usually small, that is 0.05, 0.01 

or 0.001. A confidence coefficient is 1 − α. A confidence interval affords more information 

about the unknown parameter than an estimate because the confidence coefficient and interval 

width give an indication of how close the estimator is close to the parameter. 

 

 Methods and Techniques 

The following theorem (Weierstrass Approximation Theorem) plays an important role in the 

approximation of functions. The theorem states that any continuous function can be approached 

as close as possible with polynomials, assuming that the polynomials can be of any degree. The 

theorem is formulated in L∞ form and it also holds in the L2 sense. Let πn denote the space of 

polynomials of degree ≤ n. The Weierstrass Approximation Theorem states that: Let f(x) be a 

continuous function on [a, b]. Then there exists polynomials Pn(x) that converges uniformly to 

f(x) on [a, b] that is, ∀ϵ > 0, there exists an N ∈ N and polynomials Pn(x) ∈ πn, such that ∀x ∈ [a, 

b] |f(x) − pn(x)| < ϵ ∀n ≥ N At the interpolating points, the error between the function and the 

interpolating polynomial is zero. However, between the interpolating points, the error between 

the function and the interpolating polynomial gets worse for higher order polynomials. This is 

known as Runge’s phenomenon. This is a problem of oscillation at the edges of an interval that 

occurs when using polynomial interpolation with polynomial points. This shows that going to 

higher degrees does not always improve accuracy. According to Weierstrass theorem, it is 

expected that using more points would lead to a more accurate reconstruction of f(x). However, 
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the polynomial functions are not guaranteed to have the property of  uniform convergence. The 

theorem only shows that a set of polynomial functions exists, 

but it does not give a general method of finding one. 

 

Polynomial of Best Approximation 

Assume that the function f(x) is continuous on [a,b], and assume that Pn(x) is a polynomial of 

degree ≤ n. L∞ is the distance between f(x) and Pn(x) on the interval [a, b] given by 

   xpxfpf n

bxa

n 


 max …………………………………………………………….. (3.1) 

Polynomials with an arbitrary large distance from f(x) (in L∞ sense) can be constructed. It is 

important to address how close to get to f(x) with polynomials of a given degree. Define dn(f) as 

the infimum of (3.1) over all polynomials of degree ≤ n that is, 

  


n
P

n pffd
nn

inf ……………………………………………………………………….(3.2) 

The goal is to find a polynomial  xp
n

*

  for which the infimum of (3.2) is actually obtained, that 

is,  fdn =  npf ………………….……………………………………………………… (3.3) 

A polynomial  xp
n

*

 that satisfies (3.3) is referred as the polynomial of best approximation or 

the minimax polynomial. It’s minimal distance is referred as the minimax error. 

 

The Chebyshev Polynomial 

To approximate a continuous function f on an interval [a,b] the minimax approximation need to 

be considered. The minimax polynomial approximations exist and they are unique when f is 

continuous, although they are not easy to compute. Therefore a more effective approach to 

consider is to use a near minimax approximation based on the Chebyshev polynomial. The 

Chebyshev polynomials are orthogonal. Orthogonal polynomials can be used to make the 

polynomial coefficients uncorrelated and minimize the sensitivity of calculations to roundoff 

error. Two polynomials Pi and Pj are orthogonal if  Pi(x) and Pj(x) are uncorrelated as x varies 

over the same distribution. They also have the property of bounded variation. The local maxima 

and minima of Chebyshev polynomials on [-1,1] are exactly equal to 1 and -1 respectively 

regardless of the order of the polynomial. Chebyshev polynomials have the largest possible 

leading coefficient, but subject to the condition that their absolute value is bounded on the 

interval by 1. These makes them important in the approximation theory. The Chebyshev 

polynomials are used because their roots of the first kind , which are also called Chebyshev 

nodes, are used as nodes in polynomial interpolation. Polynomial interpolation provides an 

approximation that is close to the polynomial of best approximation to a continuous function 

under the maximum norm. The Chebyshev polynomial (of the first kind) of degree k is defined 

as     jkjk
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j

j

k x
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(Cai and Low, 2011) Rivlin in 1974 showed the following expansion 
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where T2k (x) is the Chebyshev polynomial of degree 2k. Truncating equation 3.5, the following 

expansion is obtained   

Yk(x)=    
 
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Yk(x) can be written as k
k

k

xk xyxY 2

1

2)( 
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 ………………………..…………………………....(4.4) 

Suppose (3.7) is the best polynomial approximation of degree 2k to |x| and 

Yk(x) =    
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 
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 The equation (3.8) shows the uniform error bounds proved by 

Bernstein (1913). The coefficients *

2ky  and ky2 satisfy for all 0 ≤ k ≤ K, k

ky 3*

2 2 and  

k

ky 3

2 2 . The proof of the uniform error bounds on the coefficients *

2ky  and ky2   is given in 

appendices. Let the non-smooth functional to be estimated be of the form 


n

i

i
n 1

1
  from an 

observation Y ∼ N(θ, In). In estimating this functional, the lower and upper bounds are 

constructed for the MiniMax Risk. When working in the context of minimax estimation, the 

lower bounds are important. A single-value minimax lower bound is established by applying the 

general lower bound technique based on testing two composite hypotheses. For any two priors 

0  and μ1, on the parameter space, a lower bound on the expected squared bias with respect to μ1 

under a constraint on the upper bound of the expected MSE with respect to 0  is obtained. The 

lower bound depends on the difference between the expected value of T over each of the priors 

and over the variance of T under 0 . It also depends on the chi-square distance between 

marginal distributions over 0  and μ1. The optimal rates of convergence for estimating linear 

and quadratic functionals are often algebraic. Let  

L(θ) = 


n

i

i
n 1

1
 ………………………………………………………………………………... (4.6) 

Q(θ) = 


n

i

i

n 1

21
 ………………………………………………………………………………..(4.7) 

The parametric rate n−1 for estimating L(θ) can be obtained by y and for estimating Q(θ) can be 

obtained over Θn(M) using the unbiased estimator  





 

n

i i
y

n
Q

1

2

1
1ˆ  (Cai and Low, 2011). 

The estimator obtained after the singularity being smoothened at the origin by the best 

polynomial approximation is improved further using the Hermite polynomials to construct an 

unbiased estimator for each term in the expansion. These polynomials are orthogonal and are 

uncorrelated when X is standard normal on (−∞,+∞). They are used to construct an unbiased 

estimator for each term in the expansion. 
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Results 

In this section we consider the bounded case and construct an estimator that relies on the best 

polynomial approximation and the use of  Hermite polynomials.  The estimator is then shown to 

be asymptotically sharp minimax. Optimal estimator construction is involving and this is partly 

due to the nonexistence of an unbiased estimator for |θi|. Our strategy is to smooth the singularity 

at the origin by a polynomial approximation and construct an unbiased estimator for each term in 

the expansion using Hermite polynomials. A drawback of using  y
k

*

is that it is not convenient to 

construct. Therefore an explicit and nearly optimal polynomial approximation Yk can be obtained 

using the Chebyshev polynomials. The Chebyshev polynomial of degree k is 
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The following expansion can also be found, see Rivlin (1974) 
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Where T2k(x) is the Chebyshev polynomial of degree 2k. The above expression can be truncated 

to give 

Yk(x) =    
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We can also write Yk(x) as 
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k
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When we consider M = 1. The case of a general M involves an additional rescaling step. When M 

= 1, it follows that each |θi| can be well approximated 

by   k

i

k
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kik yy 2
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on the interval [−1, 1] and hence the functional T(θ) = 


n

i

i
n 1

1
  can be approximated by 
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Note that  T̂  is a smooth functional and we shall estimate b2k(θ) separately for each k by using 

Hermite Polynomials. Let ϕ be the density function of  a standard  normal variable. Recall that 

for positive integers k, Hermite Polynomial Hk is defined by 

       yyHy
dy

d
k

k

k

k

 1 ………………………………...………………………………..(5.6) 

Where Hk is a Hermite Polynomial with respect to ϕ. It is well known that if  X ∼ N(μ, 1), Hk(x) 

is an unbiased estimate of μk for any positive integer k, that is  xHE K = μk. Also, 

    !2 KdyyyH k    and        0 dyyyHyH jk   and define the estimator of T(θ) by when k  
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j Since Hk(yi) is an unbiased estimate of k
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and define the estimator of θ by   k
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For estimating the functional T(θ) over the bounded parameter space Θ(M) for a general M > 0, 

we shall first rescale each θi and then approximate |θi| term by term. More specifically, let 

i =
M

i then 1 i  for i = 1, . . . , n and 
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and define the estimator of T(θ) by   MTK ;ˆ  =
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The performance of the estimator  MTK ,ˆ   clearly depends on the choice of the cut off K. We 

choose 
n

n
KK

loglog

log
*  ……………………………………………………………….….(5.11) 

and define the final estimator of T(θ) by 
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which gives the desired result.  
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