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Abstract 

Nonparametric estimation of non-smooth functionals deals with highly structured 

problems which arise, modeled or cast differently from the ones for which 

mainline numerical methods have been designed. Non-smooth functional 

estimation problems show some features that are different from those of estimating 

smooth functionals. This is in terms of the optimal rates of convergence as well as 

the technical tools needed for the analysis of the MiniMax lower bounds and the 

construction of the optimal estimators. The main difficulty of estimating the non-

smooth functionals is traced back to the non differentiability of the absolute value 

function at the origin. This is reflected both in the derivation of the lower bounds 

and the construction of optimal estimators. The construction of the optimal 

estimators of the non-smooth functionals is more complicated than those for linear 

and quadratic functionals. In this study we consider asymptotic properties, 

polynomial estimation and MiniMax risk involving non-smooth functionals. 

 

1 Introduction 

In making statistical inference for the non-smooth functional, nonparametric 

procedures are preferred. This is because the distribution from which the MiniMax 

is drawn is unknown. These methods also use less information in their calculation 

and can be used on all types of data which are nominally scaled or are in rank form 

as well as interval or ratio scaled. The MiniMax Risk is used as bench mark to 

evaluate the performance of estimators. An estimator that minimizes the maximum 

risk is the MiniMax estimator (Lehmann and Casella, 1998). When the risk 

functions are compared, it is seen that neither risk dominates the other. This 

highlights the need to compare risk function. To do so, a one-number summary of 
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the risk function is required. Functional estimation plays a major role in the theory 

of nonparametric function estimation (Cai and Low, 2011). It is a mathematical 

relation which maps one or more functions in one number. 

 

2 An estimator for the non smooth functional 

An estimator is a function of the observations, what gives rise that the estimator 

results in a random variable. The quality of an estimator is therefore given in 

probabilistic terms. A desirable estimator is the one which has a high probability of 

being near to the unknown parameter which it estimates. A single number often 

used to estimate a population parameter is of little value. It is therefore helpful to 

know a set of values normally given as a reasonable set of values for that 

parameter (Uppal et al, 2012). The information relating to some magnitudes of the 

random variables in the sample is used in making NP inferences. The actual 

observations can be replaced for example with their relative rankings within the 

sample and the probability distribution of some function of these sample ranks 

determined  by postulating only general assumptions about the basic population 

sampled, this function provides a NP technique for estimation or hypothesis testing 

(Jean D. G. and Subhabrata C., 2003). The NP and parametric hypotheses are 

analogous, both relating to location, and identical in the case of continuous and 

symmetrical population. In statistical inference, performance is a matter of 

concern. However, generalizations about reliability are always difficult because of 

various factors like the size of the sample, significance level, cost and non 

existence of a definite and universely acceptable criterion for good performance. 

According to (Box and Anderson, 1955), the needs of the experimenter are 

fulfilled if the statistical criteria: 

• Is powerful. That is the criteria are sensitive to the change in the specified factors 

tested. 

• Is robust. That is the criteria are insensitive to changes of a magnitude likely to 

occur in practice, in extraneous factors. 

Parametric tests are derived in such a way that they satisfy the first requirement. 

However, since such tests are not valid unless the assumptions are met, robustness 

is of concern in parametric statistics. The nonparametric tests are robust because 

their construction requires only general assumptions. It is therefore good to look at 

robustness as the performance criterion for parametric tests and power for 

nonparametric tests. Calculations of power for any test require information of the 

probability distribution of the test statistic under the alternative. The alternative in 

NP problems is general. When the assumptions are met, many of the classical 

parametric tests are known to be most powerful. The NP tests are almost as 

powerful especially for small samples and are considered desirable whenever there 

is any doubt about assumptions (Jean  and Subhabrata C. 2003). Two limits 
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calculated from the sample observations  nxxxL ...,, 211  and  nxxxL ...,, 212  and P[L1 ≤ 

θ ≤ L2] = 1 − α where α is usually small 0.05, 0.01 or 0.001. This 1 − α is the 

confidence coefficient. The confidence coefficient has more information about the 

unknown parameter than an estimate. This is because the confidence coefficient 

and interval width give an indication of how close the estimator is to the parameter. 

The bias and variance are important functions associated with any estimator, θ. 

These functions are useful on how well the estimator is doing. They have a useful 

relationship between them with the mean square error. The mean square error 

decomposes into a bias and a variance terms.       
 VE ˆ

2

ˆ
ˆ  . The MSE 

of an estimator can therefore be described as a sum of a term measuring how far 

off the estimator is on average and a term measuring the variability of the 

estimator. It is shown that in estimating functionals based on iid, bounds on Mini-

Max estimation based on testing two composite hypotheses, (Cai and Low, 2011). 

Composite hypotheses are common in problems where constraints, presumed 

convexities, stochastic dominance etc may lead to one or more inequalities. These 

hypotheses do not point to a unique probability measure to be used in hypotheses 

testing, this makes it more challenging to test composite hypotheses than simple 

hypotheses. If two priors say 0  and  1 are used to obtain a lower bound on the 

expected mean squared error (MSE) with respect to 0 . The lower bound depends 

on the difference between the expected value of T over each of the priors and also 

on the variance of T under 0  (Cai and low, 2011).The bound also depends on the 

Chi-square distance between the two marginal distributions of the observations, 

one over 0 and the other over 1 . The difficulty of composite testing problem was 

shown in (Le Cam, 1973 and 1986) to depend between convex hulls of the two 

composite hypotheses. Using the prior’s 0  and 1  it is seen as picking points in 

the convex hulls of the two subsets of the parameter space and the bounds on their 

risk can be shown. When these priors are chosen carefully, sharp MiniMax lower 

bounds for estimating l1 norm of the means of normal random variables are 

obtained. Techniques used in (Lepski et al, 1999) focus on estimating the l1 norm 

of a regression function with a bound given for the Kullback-Leibler while those 

found in Cai and Low, 2011, it is seen that a chi-square distance bounded. 

However, it is not easy to provide good bounds directly for the Kullback-Leibler 

distance. This can be shown using cases which correspond to parameter spaces 

with increasing bounds. The lower bounds provided by Kullback-Leibler can only 

be used in cases where the parameter space has fixed bounds.(Cai and Low, 2011). 

 

3 Nonparametric Estimation 
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Most general methods of estimation, such as minimum chi-square or maximum 

likelihood, may be interpreted as procedures for selecting from known class of 

distributions one which, in a particular case, best fits the observations (Kaplain and 

Meier, 1958) and (Wolfowitz, 1942). These methods make more assumptions and 

if correct, accurate and precise estimates are produced (Bagdonavicious et al, 

2011). The most frequently used methods of parametric estimation for distributions 

of lifetimes are perhaps fitting of a normal distribution to the observations or their 

logarithms by calculating the mean or variance (Kaplain and Meier, 1958). Such 

Assumptions are advantageous if correct; the estimates are simple and relatively 

efficient. However, if incorrect, these methods can be misleading. For this reason, 

they are not considered robust. If the distribution is unknown, nonparametric 

statistical procedures are used (Lepski et al, 1999). These methods use less 

information in their calculation and can be used on all types of data which are 

nominally scaled or are in rank form as well as interval or ratio scaled. They are 

easy to apply on a small sample size (Bagdonavicious et al, 2011). The assumption 

most frequently required is that the population is continuous. More restrictive 

assumptions are some sometimes made, for example, that the population is 

symmetrical. The information used in NP inferences generally relates to some 

functions of the actual magnitudes of the random variables in the sample, this 

function provides a distribution-free technique for estimation or hypothesis testing. 

Box and Anderson (1955) state that to fulfill the needs of the experimenter, 

statistical criteria should: 

1. Be sensitive to change in the specific factors tested (power); 

2. Be insensitive to the changes of a magnitude likely to occur in practice, in 

extraneous factors (robust) 

Parametric tests are derived in such a way that the powerful criteria are satisfied 

for an assumed specific probability distribution. On the other hand, NP tests are 

robust because their construction requires only general assumptions. The mean and 

standard deviation are two parametric statistics that are most commonly used to 

describe a normal distribution. However, they are of little value to exploratory data 

analysis since they are affected by extreme values and are not easily understood by 

people with less knowledge in statistics. NP statistics is therefore an excellent 

supplement to the conventional mean and standard deviation for the 

communication of statistical information to a non technical audience (Corder and 

Foreman, 2009). 

 

4 Polynomial Approximation 

A polynomial is a function that can be written in the form P(x) = c0+c1x+...+cnx
n 

with some coefficients c0, ..., cn. If cn ̸= 0, then the polynomial is said to be of order 

n. A first order (linear) polynomial is the equation of a straight line, while the 

IJRDO-Journal Of Mathematics ISSN: 2455-9210

Volume-1 | Issue-6 | June,2015 | Paper-3 21 



 

 

second order (quadratic) polynomial describes a parabola. Polynomials are 

mathematical functions that exist, requiring multiplication and additions for their 

evaluation. They also have the flexibility to represent general nonlinear 

relationships (G.K. Smyth, 1998). The purpose of polynomial approximation in 

statistics is to approximate a difficult to evaluate function, such as a density or a 

distribution function, with the aim of fast evaluation on a computer. Here the 

interest is not on the curve but on how closely the polynomial can follow the 

special function, and how small the maximum error can be made. The function is 

first transformed so as to make it more amenable to polynomial approximation. 

The orthogonal polynomials can be used to make the polynomial coefficients 

uncorrelated, to minimize the sensitivity of calculations to round off error (G.K. 

Smyth, 1998). Two polynomials Pi and Pj are said to be orthogonal if Pi(x) and 

Pj(x) are uncorrelated as X varies over some distribution. For instance, Hermite 

polynomials are uncorrelated when X is standard normal on (−∞,+∞). The 

orthogonal polynomials changes sign (and has a zero) n times in the interval of 

interest 

 

5 Asymptotic Properties 

These are properties of estimators which hold as n increases. For example, 

unbiased, sufficiency, consistency, efficiency and minimum variance unbiased. In 

statistical inference, the standard error of the mean is given by 
n

2
 .This is a 

standard deviation of the sampling distribution and it measures the precision of any 

estimator. The smaller the standard error of the sampling distribution the greater 

the precision. A statistic with the propertity   xE  is said to be unbiased. An 

unbiased estimate is not necessary a good one. The distribution of the means of 

samples of say size 100 has a smaller variance 
100

2
 than that of a distribution of 

size 10, 
100

2
. In many cases the Minimum Variance Unbiasness cannot be 

obtained. The estimator which is asymptotically MVU is usually obtained. That is 

the estimator is MVU for large n. Such estimators are useful when n is large and 

will often be good when n is small. 

An unbiased estimator is measured relative to the square of standard error of the 

best unbiased estimator. If the squared standard estimator error of one unbiased 

estimator is given by 
n

2
 and the squared standard error of the best unbiased 

estimator 
n2

2
. Then the efficiency of the first estimator is defined as 

nn
E f

22

2


  =
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2

1
  It is not really necessary for T to be unbiased provided that most of its 

probability distribution is near θ. A measure of the tendency of T to be displaced 

from θ is given by E(T −θ)2 which is called the mean square error (MSE). Thus an 

alternative to the unbiased estimator is to find an estimator which has the minimum 

MSE among the set of possible estimates. MSE = E(T − θ)2 = E[[{T − E(T)} + 

{E(T) − θ}]2]= V (T) + {E(T) − θ}2 This equation shows that MSE have a minimum 

MSE. An estimate T of θ is the probability of Pr(|T − θ|) < ϵ → 1 as n → ∞ for ϵ > 

0. If T has zero bias and variance → 0 as n increases then T is consistent. One 

possible criterion for optimality of estimators is their maximum risk in certain 

classes of functions, leading to MiniMax estimators. Numerous asymptotic 

MiniMax results concerning the rate of convergence can be found in the literature. 

It turns out that most commonly used estimators (kernel, spline, orthonormal and 

wavelet) can be tuned to achieve such an optimal rate of convergence. This 

suggests that emphasis on the rate of convergence is often too weak to find a 

method which is ’best’. Recent research focus on both the optimal constant in the 

asymptotic MiniMax Risk. This has been inspired by the work of (Pinker, 1980) 

density estimation, nonparametric regression with Gaussian errors, 

(Nussbaum,1985), which was extended to non-normal error distribution (Golubev 

and Nussbaum, 1990). Recently, the results of this type were derived in the context 

of testing Composite Hypotheses, Hermite Polynomials and Optimal Estimation of 

a Non-smooth Functional (Cai and Low, 2011). It has been shown that the 

asymptotic MiniMax Risk can be obtained by optimally tuned polynomial 

approximation. 

 

6 MiniMax Risk 

An estimator is called MiniMax if its maximal risk is minimal among all 

estimators. This is an estimator which performs best in the worst possible case 

allowed in the problem (Donoho and Liu,1991) and (Ibragimov and 

Khasminski,1991). Let ˆθ = ˆθ(Xn) be an estimator for the parameter θ ∈  Θ and let 

its loss function be L(θ, θ). The loss function of an estimator, measures how good 

is the estimator. Examples of loss function include: 

   2ˆˆ,  L  -Square error loss  

  2
ˆˆ,  L absolute error loss,  

  2
ˆˆ,  L p-Lp- loss 

   
 

 dxxp
xp

xp
L 




 ;

;

;
logˆ,  








  -Kullback-Leibler loss 

If θ = (θ1, ..., θk) is a vector then some common loss function are  
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  2
ˆˆ,  L =  

2

1

ˆ



k

j

jj   

p
2

̂  = 
pk

j

jj p

1
2

1

ˆ



















 
The risk of an estimator θ is   R(θ, ̂ ) =     nxxLE ,...,ˆ,ˆ

1   = p(x1, ..., xn, 

θ)dx 

When the loss function is a squared error, the risk is just the MSE (mean squared 

error) R   ˆ, =  2̂ E   =   2ˆvar bias . The minimax risk is   ˆ,supinf RRn   

where the infimum is over all estimators. An estimator θ is a minimax estimator if 

sup   ˆ,R = infsup   ˆ,R (Lehmann and Casella, 1998). 
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