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ABSTRACT
In this paper, we consider at the equations of motion in vector form and convert them to
cylindrical coordinates. We also consider the continuity and momentum properties of these

equations.

INTRODUCTION

Cartesian coordinates
In Cartesian coordinates, the Navier-Stokes and the continuity equations are given by;

Continuity equation
The general form of equation of conservation of mass is given by

9p  Apu)  9(pv) o(pw) _
o ox oy oz

()

In equation above, u, vand w are velocities in x, ¥ and z- directions and p is the density.

The above equation is valid for steady and unsteady, compressible and incompressible fluid. In

vector form, equation can be written in vector form as;

0
a_’Lt)+v.(Pq}:O (2)

Equation (1) is the first form of continuity equation

Here,V= i£+jg+k2 andg = iu + jv + kw
ox "oy oz
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The continuity equation can also be written in another form, we use product rule on the divergent

term in equation (2) to get,

a d

StV (p@)=3+q Vp+pV-q=0 3)
In equation (3) above, the terms,% + q - Vp can be replaced by the material derivative, DD—’: ,

therefore equation (2) will become,

D _
Dt+p?.q—ﬂ (4)

Equation four is the second form of continuity equation
There are two special cases for the continuity equation (2)

1. For Steady flow, the equation does not depend on time, therefore equations (1) and (2)

o(pu)  9(pv)  o(pW) _ 4
OX oy oz
()
Or in vector form
V.pq=0 (6)

this follows since by definition, p is not a function of time for steady flow, but could be a function

becomes

of position.
2. For incompressible fluids the density, p is constant throughout the flow field so that the equations

(1) and (2) become;

V-g=0 )

Or

M N W, (8)
X oy oz

The above equation is a special form of equation (5) when density is not a function of position
and it applies to both steady and unsteady flow of incompressible fluids; this is the equation we
will use in this project since we will assume that blood is incompressible as stated in the

assumptions.
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MAIN RESULTS

The Navier stokes equations
Navier-Stokes equations are the equations of conservation of linear momentum. The general

form of the equations for incompressible flow of Newtonian (constant viscosity) fluid is given
by;
dq

E=—(q.'§-’]q+v?2q—§?fj+g+)’ 9)

vis Kinetic viscosity (constant) and is given by v = f p is density (constant), P is pressure and

gis the gravitational force.
In the equation (9) above,
- % — Acceleration term

- (g.V)q —is the advection term; the force exerted on the particles of the fluid by other particles of
the fluid surrounding it

- uVg — velocity diffusion terms; describes how the fluid motion is damped, highly viscous fluid
e.g. honey stick together while low viscous fluid flow freely, e.g. air

- VP -pressure term, fluids flow in the direction of largest change in pressure
From equation (2), V=i aﬁ + j% + kag andg = iu + jv + kw. Replacing this in equation (9) we
X z
obtain

d d
—[m—I—w-l—kw]——[m—I—w-l—kw] (1_+]3_+k )(m-l-]v-l-kw]-l-

w2 (iu + v+ kw) =2 (i + 5+ k) P+ plig, + g, +koy) + (f, +if, +KA)

(10)
In equation (10) the laplacian is given by
I A R
Vi= —+—+

dx? oy? 0z

Replacing the laplacian above in equation (10), we obtain

d d
—(m—l—w-l—kw]—(ua—-l-t!a—-l-w )(m—l—w—l—kw]—l—u[

dy? + dz?
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(iu+jv+ lm}——(1—+1—+k )P+ (ig,+jg, + kg,) + (if, + jf, + kf.) (11)

Collecting coefficients of, i,j and k together, this leads to equations in x, v and z directions

respectively as follows;

a8 az a2 az 18p
Z=(u —+~u—+u,—z)u+u axz+—+5)u+ga+g,ﬁ+}; (12)

av_( 3+ a+ 3) + 32+32+3: +15‘P+ ny
—\" v Yoz U T U\ okt dy? 9z? v p 9= G Ty

"

dw d d d s a° 19P
—=(u—+v—+w—)w—|—v sttt |wt+t——+g,.+f .
dx* dy< dz© o dx

The above three equations are the Navier-Stokes equations in x, ¥ and z components. In this

project we will neglect the body forces. Therefore dropping the body forces and rearranging the
equations we obtain;

x-component

ou, ou  ou ou)_ op 62u o’u o
pl —+U—+V—+ = +pg, + >t 5+ (13)
ot ox oy az OX ox® oy- oz

y-component

@+u@+v@+wﬂ __8_p+ g, + 62v+62v+82v (14)
Plac " ox oy ar) oy PO e T o
z-component

oW oW Ow ow op o’'w  o°'w  o*w
pl—+U—+V—+W— |=——+pQ, + —t—t—; (15)

ot OX oy oz 0z ox® oy° oz

Here, v is the coefficient of viscosity, p is the density of the fluid and g is the gravitational

force

Equations of motion in cylindrical coordinates
In cylindrical coordinates, the coordinates r is the radial distance from the z axis, & is the angle

measured from a line parallel to the x- axis, z is the coordinates along the z- axis. The velocity
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components are the radial velocity wu, the tangential velocity , and the axial velocityw. Thus the
velocity at some arbitrary point p can be expressed as

q=u.e, +ue, +Uue, (16)

Figure 1: Shape of an artery

Cartesian coordinates can be expressed into cylindrical coordinates using the relations,

X=rcosé@, y=rsing, and z=1z )

The above relations implies that

X = Xx(r, )
y=y(r,0) (18)
L1=1

I.e. Cartesian coordinates can be expressed in terms of cylindrical coordinates, also

H:tanl(xj, r={x’+y°, 1=1 (19)

X
This relations also implies that
0 =20(x,y), r=r(xYy), z2=12 (20)

Therefore equations (20) and (18) show the relationship between Cartesian coordinates and
cylindrical coordinates. In general form, the relationship between Cartesian coordinates and any

other coordinate system can be represented by,

X:X(ul7u2’u3) U =u1(X1 Y, Z)
y =y(U,u,,u;) U, =U,(X,Y,2)
Z =27(uy,U,,Us) Ug =Us(X, Y, 2)

In the above equation, u,, u,, u, are the curvilinear coordinates, they can be cylindrical
coordinates or spherical coordinates. In cylindrical coordinates;

U =u =r,u=u=60andu, =u, =z (21)

r
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To convert Cartesian coordinates to cylindrical coordinates, we first convert them into
curvilinear coordinates before to cylindrical coordinates.

In this section we will transform the continuity and momentum equations from Cartesian to
cylindrical coordinates. We will start by converting the continuity equation, and then followed

by the momentum equations.

Continuity equation
The continuity equation in vector form as shown in (7) is given by;

V.g=0
In order to understand how to convert the equation in curvilinear coordinates, we first need to

first know several parameters which we are going to use.

Unit vectors (in curvilinear coordinates)
In curvilinear coordinates w4, 1, and w4 the unit vectors, e, e; and e5 are given by

or/ou.
%= |ar?6u:| B hi,aa_urI @2
Where, i =1,2,3
r is a position vector of any point in Cartesian coordinate system and is given by;
r=xi+yj+zk (23)

or/au; Is a vector in the direction of the tangent to the u, - curve. In cylindrical coordinates, the

unit vectorse,, e; and e are given ase,., egande,.

Scale factors
We will take the curvilinear coordinates w4, 1, and u5to be orthogonal. From equation (22), the

scale factors are h; where i = 1, 2,3 and are given by;

or
h = a (24)
In equation (24) above,
r=xi+yj+zk (25)
Replacing equation (25) into equation (24) we obtain the equation,
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i=1,23
From equation (26) above, we get,

hi2= orF )f or = ﬁ”ﬂjqﬁk . ﬂi+ﬂj+ﬁk
ou, )\ ou, ou, ou, - ou ou, ou " ou

6 2 2 2 (27)
I C. S I ) 2 O 3
ou, ou, ou,
Replacing equation (17) into (27), we obtain
5 (0 “ (o Y
h? =| —rcos@ Z rsing 9
, (an r cos ] +[an rsin j J{aui zj (28)

i=1 2and3

In cylindrical coordinates the scale factors;h,, h, and k, and the coordinates u,, u, and uare

given by;
h = h,=h, andh, =
r hl 4 2 z hS (29)
U =u =r, u,=u,=6, u,=u,=12
Now replacing (29) into (28) above we get
%) (2] (3] (Feema] {Fema) (21)
h?=|—1| +|=| +| =| =| =(rcosé) | +| =—(rsind) | +| =z
' (Gr] (8rj or ar( ) ar( ) or (30)
=cos’A+sin =1
) (20) (%) (Femo] <[ Goma) (5]
h?=|—| +| = | +| — | =| =(rcosd) | +| —(rsin@) | +| —z
¢ (aej (60) o0 ae( ) ae( ) o0 (31)
=r’cos’ 0 +r’sin® 6 =r?
2 2 2 2 2 2
h,? :(%j +(gj J{QJ :[E(rcose)j +(2(rsin9)j +[gzj =1 (32)
oz 0z oz oz oz oz
From the equations; (30), (31) and (32), the scale factors in cylindrical coordinates are;
h.=1 h,=r, h, =1 (33)

Now after the above explanations, we now express the continuity equation V-g = 0 in cylindrical

coordinates. We first express the divergence, V-gin curvilinear coordinates. Before we do this,
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we first find the value of Del operator, Vin curvilinear coordinates. To do this, we first find the

value of W@, where @ is any scalar function. In curvilinear coordinates, it will be written as

Vo= fie + fie, + fie; (34)

e, €, €,,areunitvectorsalong u,, U,, U, curves.

Let rbe a position vector of a point Pin Cartesian coordinates. Thenr from (25) is given by
r=xi+yj+zk
Using the relations (17) the equation above becomes

r=rcoséi+rsinfdj+zk (35)

We need to express d@ in two different ways and compare the coefficients of du,,du, and du,
to obtain the values of, f;, f;, and f3 in equation (34).
In the first expression,

_% % % — % % % o] i
d¢_axdx+8ydy+azdz [l +j +kazj (idx + jdy + kdz)

ox "oy (36)

=Vgedr
Then using equation
r=r(u,u,,u,)

drzﬁdulJrﬂdu2 +ﬂdu3 (37)
ou, ou, ou,

From (22), equation (37) can be written as
dr = hdu,e, +h,du,e, + h,du,e, (38)
We therefore obtain

dg =Vgdr=(fe, + f,e, + f,e;).(he,du, + he,du, + he,du,)

(39)
= f,hdu, + f,h,du, +h, f,du,

d¢ can also be expressed as,

dqzﬁzﬁdul+%du2+%du3 (40)
ou, ou, ou,
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Comparing equations (39) and equations (40), get the following,
1 o¢ ¢ 1 o4 . 1 0¢

41
" h oy, 2" h, au, * " h, au, (41)
Replacing (41) in (34) we obtain,
1 o¢ o¢p 1 0¢
v + + 42
¢hlaulhazh83 (42)
Therefore, from equation (42)
190 1 0 1 0 e, 43)

&+ €+
h1 8u h, ou, h, ou,
In cylindrical coordinates, equation (43) can be written as

V=— 0 e, +1ie +ge (44)
or r oo 0z

We will then proceed to find the value of ¥ - gin curvilinear coordinates. In curvilinear
coordinates, we will takeqto be equal to

q = uje; + u,e, + uze,

Vig=Ve(ue, +u,e, +U,e;)=VL{ue,)+ VL{u,e,) + VI{u.e,) (45)
From, equation (42) above,

1 oy, 1 ou, 1 ou, e

vu, = +——Le =1 46

| hl au € h, au, 2t h3 a € h, (46)

Vu, = 1 ou, e, Jriaie2 L au3 e, _% (47)
hl au h, ou, h3 Ou, h,

v =t Mg L, 1O, & (48)
h1 ou, h, ou, h3 ou, h,

We then deal with each term on the right hand-side of equation (45), but first we derive certain
relations. From equations (46), (47) and (48), we obtain;

e, e, xe,

- =Vu,xVu, =e, =hhVu,xVu, (49)
hh, ~ hh, '
e, € Xe,
—2 -2 _yy xVu, =e,=hhVuxVu, (50)
hh,  hh ' i '
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e, € Xe,
2 =72 _yy xVu, =e,=hhVuxVu, (51)
hh,  hh,

We will then express all the terms on the left hand-side in equation (45) in curvilinear

coordinates, we will begin with the term, V[{ue,)

Vi{(ue,) = Vi(h,hu,Vu, x Vu,)

(52)
= h,h,u,VL(Vu, x Vu, ) +(Vu, x Vu, ).V (h,hu, )
But in equation (52) above,
VI(Vu, x VU, ) = Vu,[(Vx VU, ) - Vu,[(VxVuy ) =0
Hence,
V(ue,) = (Vu, xVuy ).V (h,hu,) (53)
From equations, (47 — 49), equation (53) becomes
e
Vi(ue,) =——V(hhyu,) (54)
h,h,
Using equation (42), we can express V(h,h,u,) in the above equation as
o(h,hu o(h,hu o(h,hu
V(h2h3u1):l—( 2= l)el+i—( 22 l)eeri—( 22 l)e3 (55)
h ou h, au, h, ou,
Now replacing equation (55) into (54) we obtain
e 10 1 0 1 0
vi{ue,) = —] ———(h,hy, )e, + ———(h,hu, )e, + ———(h,h.u, )e 56
)= 2 e s 2 e b 2 (e, 5
Simplifying equation (56), we obtain,
1 0
V{u,e,)=———(h,hu 57
quge,) hlhzhaaul(zsl) (57)
In a similar way the remaining two terms in equation (42) can be found to be
1 0
Vi{u,.e,) = —(hhu 58
e = auz(hlsz) (58)
1 0
Vi{u,e,) = —(hh,u 59
W) =i aus(m Us ) (59)

Replacing equations (57 —59) in (45) we obtain
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1 0 1 o0

1 0
—(h,hyu, )+ —
hhh, aul( 7 l) hhohy du,

hb,h, ou,

VEq = (h1h3u1)+ (hlhzul) (60)

Using equations (33) we can now express equation (60) in cylindrical coordinates as

_la(rur) +la(ug) . o(u,)
r or r 00 oz

Vig (61)

Momentum equation
The momentum equation in vector form as shown in equation (9)

8
p(aq +(q-V)qj =-Vp+ pg+ 1V°q

We want to express the above equation in cylindrical coordinates. Since we have already

calculated the value of the grad, V we only need to find the value of the Laplacian, V2. To do

this, we first find the value of V2 £, where f is any scalar function and then and then finally find

the laplacian.

Vi E =VI(Vf) (62)
We then let

.F = Ff, Where F = Fl €y + Fz Eg + FH €3 (63)

From equation (42),
e e o e 0

F=vf= 2 =2 (64)
h ou h,du, h,au,
Comparing coefficients ofe,, e, and e, in equations (63), (64), we obtain;
1 of 1 of 1 of
Flz__’ 2:_—’ 3:—— (65)
h, ou, h, ou, h, ou,
From equation (60), equation (62) can be written as,
V2 f = VI(Vf)=VIF =VI[(Fe, + Fe, + Fe,)
(66)

1 [0 8 8
= h, {a_ul(hzhﬁ)+£(hh3|:2)+a_lj3(hh2|:3)}

Equation (66) can be simplified to
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o L [0 of) o (hhof) o (hh of o
hhh, | ou { h ou ) ou,\ h, ou,) ou,\ h, ou,

Hence the laplacian in curvilinear coordinates is given by;

V2 = 1 | 0(hh 0 N o (hhy 0 N o (hh, o (68)
hhh | ou { h ou ) ou,\ h, ou, ) ou,\ h, du,

In cylindrical coordinates, equation (68) becomes

2 2
vzzli[rﬁj+iza_2+a_2 (69)
ror\ or) r°o00° oz
The gravitational force, gin cylindrical coordinates can be written as,
g = grer + geee + gzez (70)

Substituting, V, V2 and g from equations; (42), (69) and (70) respectively, in equation (60),

8
,{Eq + (q-V)qJ =-Vp+ pg+ 1V°q
We obtain;

pg(ue +Uye, +U,e, )+| (ue, +u,e +ue).(ge +1ie +£e]D(ue +Uye, +Ue, )| =
atrr 0~0 77z r-r [Ad’] vz arrragﬂ azz r-r 0~0 77z

0 10 0 l1o0( 0 1 0% ©0°
—| —e, +=—e,+—¢, |p+p(0,6 +0,80+0,8, )+ -—|r— [+ —5+— |(Ue +ue, +Uue,)

or rog ° oz ror_ or) r*or® oz
(71)
On simplifying equation (71), we
obtain
0 0 0 0 10 0
P Ure TP Ugy +p e, p(ur ST U, Eezj 0 (u,e, +Uuye, +Uu,e,)

op 10p op
=—|—e +-—¢€,+—¢6, |+ e. + pg,e, + pg,e
(8r LR j (Pg.e, + pg,e, + PY.e,)

+ 1£(r£j+ii+i (u e, +U,e, +U,e,)
Hlvarar ) v agr "oz |V e T
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e+uge ue. + uﬁe+ulae+u£e u,e
0 Zazz rrprarr 0 z [’}

2ue+ éue+ gue+ uie +U,—— -—
patrr patao patzzpr r 6 Hrag ZaZ

or r oo

ioluZe vyt e sy e fue ——[Pe 1R, P +(pg,e, + Pg,e, + PY,e, )+
P rarr Graae 2622 77z arr raeﬂ azz rer A’] 77z

1§(r§j+ia_2+i ve + lé(rﬁj+ii+i Le + li(riJ+ii+i Le
“ralar) vog a2 | vl o) vog a2 |rarlor) Pog a2t

(73)
Now collecting terms that containe,, we obtain;

gu + [u g+u i+u iju __8_p+ pg, + 12(r£j+i il +i u (74)
PP Mrar a0 ) ar T H o) o0 )"

While those that containe, , are

gu + (u ﬁ+u i+u ﬁju =——+pg, + li(rg}ri o +i u (75)
Pa e P Trar T80 e )T e P T Y arar ) T2 a0 T )l

And finally those containing e, are

gu + (u i+u i+u gju ——@+ pg, + 1g(r£]+ii+i u (76)
patz P "or ‘00 ‘oz) ! Ford M Yo ar r2 06> o2 ) °

Therefore, equations; (74), (75) and (76) are the Navier — Stokes equation in cylindrical
coordinates. On simplifying the three equations we obtain

r-component

(aur ou. U, ou U aurj
p| =L u 42 =0y,

ot "o rod r ta an
_ o Q@+ lg(raurj_u_”riazur_i6u9+82ur
or P TH ror\ or ) r® r?o060* r?o00 o7°
6 - component
ou, U, ou, Jru_(,au‘9 L Ul +Uz%
ot or r 00 r oz 78)
ro0 T Yo ar ) v T 00 o0 o

Z- component
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ou, ou, u, ou, ou,
P +U, +—-—+4uU,
ot or r 06 0z

——@+ q, + 12(rauzj+iﬂ+azuz
0z P ’urar or ) r’>o6* o7°

(79)

CONCLUSION
In this paper we have outlined the expression of motion equations from vector form to
cylindrical coordinates.
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