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ABSTRACT  

In this paper, we consider at the equations of motion in vector form and convert them to 

cylindrical coordinates. We also consider the continuity and momentum properties of these 

equations. 

INTRODUCTION 

Cartesian coordinates 
In Cartesian coordinates, the Navier-Stokes and the continuity equations are given by; 

Continuity equation 

The general form of equation of conservation of mass is given by 

( ) ( ) ( )
0

u v w

t x y z

      
   

   
  (1) 

In equation above, and  are velocities in  and - directions and  is the density. 

The above equation is valid for steady and unsteady, compressible and incompressible fluid. In 

vector form, equation can be written in vector form as; 

t





 = 0  (2) 

Equation (1) is the first form of continuity equation 

Here,
x y z

  
  

  
i j k   and u v w  i j k  
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The continuity equation can also be written in another form, we use product rule on the divergent 

term in equation (2) to get, 

       (3) 

In equation (3) above, the terms,  can be replaced by the material derivative,  , 

therefore equation (2) will become, 

  (4) 

Equation four is the second form of continuity equation 

There are two special cases for the continuity equation (2) 

1. For Steady flow, the equation does not depend on time, therefore equations (1) and (2) 

becomes
( ) ( ) ( )

0
u v w

x y z

    
  

  
       

 (5) 

Or in vector form 

𝛁.   = 0          (6) 

this follows since by definition, ρ is not a function of time for steady flow, but could be a function 

of position. 

2. For incompressible fluids the density, ρ is constant throughout the flow field so that the equations 

(1) and (2) become; 

 

∇∙   0          (7) 

Or 

0
u v w

x y z

  
  

  
         (8) 

The above equation is a special form of equation (5) when density is not a function of position 

and it applies to both steady and unsteady flow of incompressible fluids; this is the equation we 

will use in this project since we will assume that blood is incompressible as stated in the 

assumptions. 
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MAIN RESULTS 

The Navier stokes equations 

Navier-Stokes equations are the equations of conservation of linear momentum. The general 

form of the equations for incompressible flow of Newtonian (constant viscosity) fluid is given 

by; 

       (9) 

is kinetic viscosity (constant) and is given by ,  is density (constant),  is pressure and 

is the gravitational force. 

In the equation (9) above,  

-  – Acceleration term 

-  – is the advection term; the force exerted on the particles of the fluid by other particles of 

the fluid surrounding it 

-  – velocity diffusion terms; describes how the fluid motion is damped, highly viscous fluid 

e.g. honey stick together while low viscous fluid flow freely, e.g. air 

-  - pressure term, fluids flow in the direction of largest change in pressure 

From equation (2), ∇
x y z

  
  

  
i j k   and u v w  i j k . Replacing this in equation (9) we 

obtain 

 

 

 (10) 

In equation (10) the laplacian is given by 

 

Replacing the laplacian above in equation (10), we obtain 
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 (11) 

Collecting coefficients of,  together, this leads to equations in  directions 

respectively as follows; 

 (12) 

 

 

 

The above three equations are the Navier-Stokes equations in  and  components. In this 

project we will neglect the body forces. Therefore dropping the body forces and rearranging the 

equations we obtain; 

-component 

2 2 2

2 2 2x

u u u u p u u u
u v w g

t x y z x x y z
  

         
          

          
 (13) 

-component 

2 2 2

2 2 2y

v v v v p v v v
u v w g

t x y z y x y z
  

         
          

          
 (14) 

-component 

2 2 2

2 2 2z

w w w w p w w w
u v w g

t x y z z x y z
  

         
          

          
 (15) 

Here,   is the coefficient of viscosity,  is the density of the fluid and g is the gravitational 

force 

Equations of motion in cylindrical coordinates 

In cylindrical coordinates, the coordinates  is the radial distance from the  axis,  is the angle 

measured from a line parallel to the - axis,  is the coordinates along the - axis. The velocity 
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components are the radial velocity the tangential velocity  and the axial velocity . Thus the 

velocity at some arbitrary point  can be expressed as 

r zu u u  r θ zq e e e   (16) 

 

Figure 1: Shape of an artery 

Cartesian coordinates can be expressed into cylindrical coordinates using the relations, 

cos ,    sin ,   and  x r y r z z      (17) 

The above relations implies that 

( , )

( , )

x x r

y y r

z z











  (18) 

I.e. Cartesian coordinates can be expressed in terms of cylindrical coordinates, also 

1 2 2tan ,      ,        
y

r x y z z
x

   
    

 
  (19) 

This relations also implies that  

( , ),         ( , ),        x y r r x y z z      (20) 

 

Therefore equations (20) and (18) show the relationship between Cartesian coordinates and 

cylindrical coordinates. In general form, the relationship between Cartesian coordinates and any 

other coordinate system can be represented by, 

1 2 3 1 1

1 2 3 2 2

1 2 3 3 3

( , , )                    ( , , )

( , , )                   ( , , )

( , , )                    ( , , )

x x u u u u u x y z

y y u u u u u x y z

z z u u u u u x y z

 

 

 

 

In the above equation, 1 2 3,  ,   u u u  are the curvilinear coordinates, they can be cylindrical 

coordinates or spherical coordinates. In cylindrical coordinates; 

1 2 3,   and ur zu u r u u u z         (21) 
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To convert Cartesian coordinates to cylindrical coordinates, we first convert them into 

curvilinear coordinates before to cylindrical coordinates.  

In this section we will transform the continuity and momentum equations from Cartesian to 

cylindrical coordinates. We will start by converting the continuity equation, and then followed 

by the momentum equations. 

Continuity equation 

The continuity equation in vector form as shown in (7) is given by; 

∇∙   0 

In order to understand how to convert the equation in curvilinear coordinates, we first need to 

first know several parameters which we are going to use. 

Unit vectors (in curvilinear coordinates) 

In curvilinear coordinates  and  the unit vectors, ,  and  are given by 

i

i

u

u

 

 

i

r
e

r

1

i ih u






r
  (22) 

Where,  

r is a position vector of any point in Cartesian coordinate system and is given by; 

x y z  r i j k   (23) 

iu r Is a vector in the direction of the tangent to the iu - curve.  In cylindrical coordinates, the 

unit vectors ,  and  are given as , and . 

Scale factors 

We will take the curvilinear coordinates  and to be orthogonal. From equation (22), the 

scale factors are  where  and are given by; 

i

i

h
u





r
  (24) 

In equation (24) above, 

x y z  r i j k   (25) 

Replacing equation (25) into equation (24) we obtain the equation, 

i

i i i i

r x y z
h

u u u u

   
   
   

i j k   (26) 
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From equation (26) above, we get, 

2

2 2 2

                           

i

i i i i i i i i

i i i

r r x y z x y z
h

u u u u u u u u

x y z

u u u

             
            

             

       
       

       

i j k i j k

 (27) 

Replacing equation (17) into (27), we obtain 

2 2 2

2 cos sin

1,  2 and 3

i

i i i

h r r z
u u u

i

 
       

       
       



  (28) 

In cylindrical coordinates the scale factors; ,  and  and the coordinates ,  and are 

given by;  

1 2 3

1 2 3

    and h

,   ,  

r z

r z

h h h h h

u u r u u u u z



 

  

     
  (29) 

Now replacing (29) into (28) above we get 

2 2 2 2 2 2

2

2 2

( cos ) ( sin )

    cos sin 1

r

x y z
h r r z

r r r r r r
 

 

                
                

                

  

 (30) 

2 2 2 2 2 2

2

2 2 2 2 2

( cos ) ( sin )

    cos sin

x y z
h r r z

r r r

  
     

 

                
                

                

  

 (31) 

2 2 2 2 2 2

2 ( cos ) ( sin ) 1z

x y z
h r r z

z z z z z z
 

                
                 

                
 (32) 

From the equations; (30), (31) and (32), the scale factors in cylindrical coordinates are; 

1,      ,        1r zh h r h     (33) 

Now after the above explanations, we now express the continuity equation ∇∙   0 in cylindrical 

coordinates. We first express the divergence, ∇∙ in curvilinear coordinates. Before we do this, 
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we first find the value of Del operator, ∇in curvilinear coordinates. To do this, we first find the 

value of , where  is any scalar function. In curvilinear coordinates, it will be written as 

   (34) 

1 2 3e    e    e , are unit vectors along 1 2 3,   ,  u u u  curves. 

Let  be a position vector of a point in Cartesian coordinates. Then  from (25) is given by 

x y z  r i j k  

Using the relations (17) the equation above becomes 

cos sinr r z   r i j k   (35) 

We need to express  in two different ways and compare the coefficients of   and  

to obtain the values of, ,  , and  in equation (34). 

In the first expression,  

 

    

d dx dy dz dx dy dz
x y z x y z

dr

     




      
         
      

  

i j k i j k
 (36) 

Then using equation 

1 2 3( , , )u u ur r  

1 2 3

1 2 2

d du du du
u u u

  
  
  

r r r
r   (37) 

From  (22), equation (37) can be written as 

1 1 2 2 3 3d h du h du h du  1 2 3r e e e   (38) 

We therefore obtain 

   1 2 3 1 1 2 2 3 3

1 1 1 2 2 2 3 3 3

. .

    

d dr f f f h du h du h du

f h du f h du h f du

       

  

1 2 3 1 2 3e e e e e e
 (39) 

d can also be expressed as, 

1 2 3

1 2 2

d du du du
u u u

  


  
  
  

  (40) 
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Comparing equations (39) and equations (40), get the following, 

1 2 3

1 1 2 2 3 3

1 1 1
               f f f

h u h u h u

    
  

  
  (41) 

Replacing (41) in (34) we obtain, 

1 1 2 2 3 3

1 1 1

h u h u h u

  


  
  

  
1 2 3e e e   (42) 

Therefore, from equation (42) 

1 1 2 2 3 3

1 1 1

h u h u h u

  
  

  
1 2 3e e e   (43) 

In cylindrical coordinates, equation (43) can be written as 

1

r r z

  
  
  

r θ ze e e   (44) 

We will then proceed to find the value of in curvilinear coordinates. In curvilinear 

coordinates, we will take to be equal to 

 

1 2 3 1 2 3( ) ( ) ( ) ( )u u u u u u        1 2 3 1 2 3q e e e e e e  (45) 

From, equation (42) above,  

1 1 1
1 3

1 1 2 2 3 3 1

1 1 1u u u
u

h u h u h u h

  
    

  

1

1 2

e
e e e   (46) 

32 2
2

1 1 2 2 3 3 2

1 1 1 uu u
u

h u h u h u h

 
    

  

2

1 2 3

e
e e e   (47) 

3 3 3

3

1 1 2 2 3 3 3

1 1 1u u u
u

h u h u h u h

  
    

  

3

1 2 3

e
e e e   (48) 

We then deal with each term on the right hand-side of equation (45), but first we derive certain 

relations. From equations (46), (47) and (48), we obtain; 

2 3 2 3 2 3

2 3 2 3

   u u h h u u
h h h h


       2 31

1

e ee
e  (49) 

1 3 1 3 1 3

1 3 1 3

   u u h h u u
h h h h

       1 32

2

e ×ee
e  (50) 
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1 2 1 2 1 2

1 2 1 2

   u u h h u u
h h h h

       3 1 2

3

e e ×e
e  (51) 

We will then express all the terms on the left hand-side in equation (45) in curvilinear 

coordinates, we will begin with the term, ( )u 1e  

 

     

1 2 3 1 2 3

2 3 1 2 3 2 3 2 3 1

( )

              .

u h h u u u

h h u u u u u h h u

    

       

1e
 (52) 

But in equation (52) above, 

     2 3 3 2 2 3 0u u u u u u          

Hence,  

   1 2 3 2 3 1( ) .u u u h h u    1e   (53) 

From equations, (47 – 49), equation (53) becomes 

 1 2 3 1

2 3

( ) .u h h u
h h

  1

1

e
e   (54) 

Using equation (42), we can express 2 3 1( )h h u in the above equation as 

 
     2 3 1 2 3 1 2 3 1

2 3 1

1 1 2 2 3 3

1 1 1h h u h h u h h u
h h u

h u h u h u

  
   

  
1 2 3e e e  (55) 

Now replacing equation (55) into (54) we obtain 

     1 2 3 1 2 3 1 2 3 1

2 3 1 1 2 2 3 3

1 1 1
( )u h h u h h u h h u

h h h u h u h u

   
    

   

1

1 1 2 3

e
e e e e  (56) 

Simplifying equation (56), we obtain, 

 1 2 3 1

1 2 3 1

1
( )u h h u

h h h u


 


1e   (57) 

In a similar way the remaining two terms in equation (42) can be found to be 

 2 1 3 2

1 2 3 2

1
( )u h h u

h h h u


 


2e   (58) 

 3 1 2 3

1 2 3 3

1
( )u h h u

h h h u


 


3e   (59) 

Replacing equations (57 – 59) in (45) we obtain 
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     2 3 1 1 3 1 1 2 1

1 2 3 1 1 2 3 2 1 2 3 3

1 1 1
h h u h h u h h u

h h h u h h h u h h h u

  
   

  
q  (60) 

Using equations (33) we can now express equation (60) in cylindrical coordinates as 

     1 1r zru u u

r r r z





  
   

  
q   (61) 

Momentum equation 

The momentum equation in vector form as shown in equation (9) 

  2.
q

p p
t

 
 

       
 

q q g q    

We want to express the above equation in cylindrical coordinates. Since we have already 

calculated the value of the grad, we only need to find the value of the Laplacian,
2 . To do 

this, we first find the value of , where  is any scalar function and then and then finally find 

the laplacian. 

 2 f f      (62) 

We then let 

, where   (63) 

From equation (42),  

2

1 1 2 2 3 3

f f
F f

h u h u h u

  
    

  

31
ee e

  (64) 

Comparing coefficients of  and 1 2 3e ,  e e , in equations (63), (64), we obtain; 

1 2 3

1 1 2 2 3 3

1 1 1
,  ,  

f f f
F F F

h u h u h u

  
  

  
  (65) 

From equation (60), equation (62) can be written as, 

     

2

1 2 3

2 3 1 1 3 2 1 2 3

1 2 3 1 2 3

( ) ( )

1
        =

f f F F F

h h F h h F h h F
h h h u u u

         

   
  

   

1 2 3F e e e

 (66) 

Equation (66) can be simplified to  
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2 2 3 1 3 1 2

1 2 3 1 1 1 2 2 2 3 3 3

1 h h h h h hf f f
f

h h h u h u u h u u h u

          
        

            

 (67) 

Hence the laplacian in curvilinear coordinates is given by; 

2 2 3 1 3 1 2

1 2 3 1 1 1 2 2 2 3 3 3

1 h h h h h h

h h h u h u u h u u h u

          
        

            

 (68) 

In cylindrical coordinates, equation (68) becomes 

2 2
2

2 2 2

1 1
r

r r r r z

    
    

    
  (69) 

The gravitational force, in cylindrical coordinates can be written as, 

r zg g g  r θ zg e e e   (70) 

Substituting, 2,   and   g  from equations; (42), (69) and (70) respectively, in equation (60), 

  2. p p
t

 
 

       
 

q
q q g q  

We obtain; 

     

   
2 2

2 2 2

1
.   

1 1 1

r z r z r z

r z r z

u u u u u u u u u
t r r z

p p g g g r u u u
r r z r r r r r z

  

 







      
            

      

          
               

          

r θ z r θ z r θ z r θ z

r θ z r θ z r θ z

e e e e e e e e e e e e

e e e e e e e e e

  (71) 

On simplifying equation (71), we 

obtain

 

 

2 2

2 2 2

1
  

1

1 1
                                

r z r z r z

r z

r

u u u u u u u u u
t t t r r z

p p p
pg pg pg

r r z

r u u
r r r r z

  



   







      
       

      

   
       

   

     
      

     

r θ z r θ z r θ z

r θ z r θ z

r

e e e e e e e e e

e e e e e e

e zu θ ze e

             (72) 
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 

1 1
 

1 1
 

1

r z r z r r z

r z z r z

u u u u u u u u u u u
t t t r r z r r z

p p p
u u u u pg pg pg

r r z r r z

r
r r r

   

 

    
 


 



           
          

           

        
             

        

 

 

r θ z r θ z r r θ z θ

r θ z z r θ z r θ z

e e e e e e e e e e e

e e e e e e e e e e

2 2 2 2 2 2

2 2 2 2 2 2 2 2 2

1 1 1 1 1
r zu r u r u

r r r r r rr z r z r z


  

                  
                  

                 
r θ ze e e

  (73) 

Now collecting terms that contain re , we obtain;  

2 2

2 2 2

1 1
r r z r r r

p
u u u u u pg r u

t r z r r r r r z
  

 

            
            

            
 (74) 

While those that contain θe , are 

2 2

2 2 2

1 1
r z

p
u u u u u pg r u

t r z r r r r z
      

  

            
            

            
 (75) 

And finally those containing ze are 

2 2

2 2 2

1 1
z r z z z z

p
u u u u u pg r u

t r z z r r r r z
  

 

            
            

            
 (76) 

Therefore, equations; (74), (75) and (76) are the Navier – Stokes equation in cylindrical 

coordinates. On simplifying the three equations we obtain                 

r-component 

2

2 2

2 2 2 2 2

1 1 1

r r r r
r z

r r r r
r

u uu u u u
u u

t r r r z

uu u u up
q r

r r r r r r r z

 






 
 

    
    

    

      
         

       

 (77) 

 - component 

2 2

2 2 2 2 2

1 1 1 2

r r
r z

u u u u u u u
u u

t r r r z

u u u u up
q r

r r r r r r r z

    

    





 
  

    
    

    

       
         

       

 (78) 

z- component 
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2 2

2 2 2

1 1

z z z r
r z

z z z
z

uu u u u
u u

t r r z

u u up
q r

z r r r r z




 


    
   

    

      
       

      

 (79) 

CONCLUSION 

In this paper we have outlined the expression of motion equations from vector form to 

cylindrical coordinates. 
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