The Comparison of the convergence rate with different

preconditioners for Linear Systems

Aijuan Li

School of Mathematics and Statistics, Shandong University of Technology, Zibo 255049, PR China juanzi612@163.com

Abstract

In this paper, the preconditioned Gauss-Seidel iterative methods are proposed with different preconditioners. The comparison theorem is obtained under the different preconditioners when the coefficient matrix A of linear system is a nonsingular M- matrix. This generalizes the result in [1]. Numerical example are given to illustrate our theoretical result.

Keywords: Gauss-Seidel iterative, spectral radius, M-matrix, preconditioner

I Introduction

We consider the linear system of n equations

$$4x = b \tag{1}$$

Where $A = (a_{ii}) \in \mathbb{R}^{n \times n}$ and $b \in \mathbb{R}^{n}$ are given and $x \in \mathbb{R}^{n}$ is unknown.

Assume that

$$A = M - N$$

Where M is nonsingular. Then the basic iterative method for solving (1) can be expressed in the form

$$x^{(k+1)} = M^{-1}Nx^{(k)} + M^{-1}b, k = 0, 1, \cdots$$

Where $x^{(0)}$ is an initial vector. As it is well known, the above iterative process is convergent to the unique solution $x = A^{-1}b$ for each initial value $x^{(0)}$ if and only if the spectral radius of the iteration matrix $M^{-1}N$ satisfies $\rho(M^{-1}N) < 1$.

For simplicity, we let A = I - L - U, where *I* is the identity matrix, *L* and *U* are strictly lower and strictly upper triangular matrices, respectively. Then the iteration matrix of the

Gauss-Seidel iterative method for solving the linear system (1) is

$$T = (I - L)^{-1} U$$
 (2)

In order to accelerate the convergence of iterative method for solving the linear system (1), the original system (1) is transformed into the following preconditioned linear system

$$PAx = Pb$$
 (3)

where $P \in R^{n \times n}$ is nonsingular and called a preconditioner. Then the corresponding basic iterative method is given in general by

$$x^{(k+1)} = M_p^{-1} N_p x^{(k)} + M_p^{-1} Pb, k = 0, 1, 2 \cdots$$

where $PA = M_p - N_p$ is a splitting of PA and M_p is nonsingular. Similar to the original system (1), we call the basic iterative methods corresponding to the preconditioned system the preconditioned iterative methods, such as the preconditioned Gauss-Seidel method and preconditioned AOR iterative method.

In [1]-[9], some different preconditioners have been proposed by several authors. In [1], the author presented preconditioned Gauss-Seidel method for linear systems and compared the convergence rate by using different preconditioners.

In this paper, we propose the new preconditioned Gauss-Seidel with the preconditioners P_1 and P_2 , respectively. Furthermore, we compare the convergence rate of preconditioned Gauss-Seidel with the preconditioners P_1 and P_2 .

The preconditioner P_1 is of the form $P_1 = I + R_{\alpha} + U$, where

$$R_{\alpha} = \begin{pmatrix} 0 & 0 & \cdots & 0 & 0 \\ 0 & 0 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \cdots & 0 & 0 \\ -\alpha_{1}a_{n1} & -\alpha_{2}a_{n2} & \cdots & -\alpha_{n-1}a_{nn-1} & 0 \end{pmatrix}$$

and $\alpha_i (i = 1, 2, \dots, n-1)$ are real numbers. If $\alpha_i = 1 (i = 1, 2, \dots, n-1)$, the R_{α} becomes R in

[1].

The preconditioner P_2 is of the form $P_2 = I + R_{\alpha} + S$, where

	(0	$-a_{12}$	0	•••	0
C	0	0	$-a_{23}$	•••	0
3 =	÷	÷	÷	÷	$-a_{n-1n}$
	0	0	0	•••	0

If $\alpha_i = 1(i = 1, 2, \dots, n-1)$, the preconditioners P_1 and P_2 become the preconditioners P_{RU}

and P_{SR} , respectively.

For convenience, some notations, definitions, lemmas and the theorems that will be used in the following parts are given below.

II Preliminaries

In this paper, $\rho(\cdot)$ denotes the spectral radius of a matrix.

Definition 2.1([10]). For $A = (a_{ij})$, $B = (b_{ij}) \in \mathbb{R}^{n \times n}$, we write $A \ge B$, if $a_{ij} \ge b_{ij}$ holds for all $i, j = 1, 2, \dots, n$. Calling A nonnegative matrix if $A \ge 0$ ($a_{ij} \ge 0, i, j = 1, 2, \dots, n$).

Definition 2.2([11]). A matrix A is a L-matrix if $a_{ii} \ge 0.i = 1, 2, \dots, n$ and $a_{ij} \le 0$ for all $i, j = 1, 2, \dots, n$, $i \ne j$. A nonsingular L-matrix A is a nonsingular M-matrix if $A^{-1} \ge 0$.

Lemma 2.1([10]). Let A be a nonnegative $n \times n$ nonzero matrix. Then

(a) $\rho(A)$, the spectral radius of A, is an eigenvalue;

(b) A has a nonnegative eigenvector corresponding to $\rho(A)$;

(c) $\rho(A)$ is a simple eigenvalue of A;

(d) $\rho(A)$ increases when any entry of A increases.

Definition 2.3([10]). For $n \times n$ real matrices A, M and N, A = M - N is a regular splitting of the matrix A if M is nonsingular with $M^{-1} \ge 0$ and $N \ge 0$. Similarly,

A = M - N is a weak regular splitting of the matrix A if M is nonsingular with $M^{-1} \ge 0$

and $M^{-1}N \ge 0$.

Lemma 2.2([2]). Let A be a nonnegative matrix. Then

(1) If $\alpha x \le Ax$ for some nonnegative vector $x, x \ne 0$, then $\alpha \le \rho(A)$.

(2) If $Ax \leq \beta x$ for some positive vector x, then $\rho(A) \leq \beta$. Moreover, if A is irreducible and if $0 \neq \alpha x \leq Ax \leq \beta x$, $\alpha x \neq Ax$, $Ax \neq \beta x$ for some nonnegative vector x, then $\alpha < \rho(A) < \beta$ and x is a positive vector.

Lemma 2.3([1]). Suppose that $A_1 = M_1 - N_1$ and $A_2 = M_2 - N_2$ are weak regular splitting of the monotone matrices A_1 and A_2 , respectively, such that $M_2^{-1} \ge M_1^{-1}$. If there exists a positive vector x such that $0 \le A_1 x \le A_2 x$. Then, for the monotonic norm associated with x,

$$\left\|M_{2}^{-1}N_{2}\right\|_{x} \leq \left\|M_{1}^{-1}N_{1}\right\|_{x}$$

In particular, if $M_1^{-1}N_1$ has a positive Perron vector, then

$$\rho(M_2^{-1}N_2) \le \rho(M_1^{-1}N_1)$$

III Preconditioned Gauss-Seidel iterative method and comparison theorem

For the linear system (1), we consider its preconditioned from

$$A_1 x = P_1 A x = P_1 b \tag{4}$$

where $P_1 = I + R_{\alpha} + U$.

Now, we express the coefficient matrix of (4) as

$$\begin{split} A_{1} &= P_{1}A = (I + R_{\alpha} + U)(I - L - U) \\ &= I - L - U + R_{\alpha} - R_{\alpha}L - R_{\alpha}U + U - UL - U^{2} \\ &= I - D_{0} - D_{1} - (L - R_{\alpha} + R_{\alpha}L + E_{1} + E_{0}) - (F_{0} + U^{2}) \\ &= M_{UR_{\alpha}} - N_{UR_{\alpha}} \end{split}$$

where $UL = D_0 + E_0 + F_0$ and $R_{\alpha}U = D_1 + E_1$. D_0, E_0 and F_0 are diagonal, strictly lower and upper triangular parts of UL, respectively. D_1 and E_1 are diagonal and strictly lower triangular parts of $R_{\alpha}U$.

Suppose that $M_{UR_{\alpha}} = I - D_0 - D_1 - (L - R_{\alpha} + R_{\alpha}L + E_1 + E_0)$ (5)

$$N_{UR_{\alpha}} = F_0 + U^2$$
 (6)

Then the perconditioned Gauss-Seidel iteration matrix with the preconditioner P_1

$$T_{UR_{\alpha}} = M_{UR_{\alpha}}^{-1} N_{UR_{\alpha}} = [(I - D_0 - D_1) - (L - R_{\alpha} + R_{\alpha}L + E_1 + E_0)]^{-1} (F_0 + U^2)$$
(7)

Similarly, we consider its preconditioned form

$$A_2 x = P_2 A x = P_2 b \tag{8}$$

where $P_2 = I + R_{\alpha} + S$.

We express the coefficient matrix of (8) as

$$\begin{split} A_2 &= P_2 A = (I + R_{\alpha} + S)(I - L - U) \\ &= I - L - U + R_{\alpha} - R_{\alpha}L - R_{\alpha}U + S - SL - SU \\ &= I - D_1 - D_2 - (L - R_{\alpha} + R_{\alpha}L + E_1 + E_2) - (U - S + SU) \\ &= M_{SR_{\alpha}} - N_{SR_{\alpha}} \end{split}$$

Where $SL = D_2 + E_2$, D_2 and E_2 are diagonal and strictly lower triangular parts of SL,

respectively.

Suppose that

$$M_{SR_{\alpha}} = I - D_1 - D_2 - (L - R_{\alpha} + R_{\alpha}L + E_1 + E_2)$$
(9)
$$N_{SR_{\alpha}} = U - S - SU$$
(10)

Then the preconditioned Gauss-Seidel iteration matrix with the preconditioner P_2

$$T_{SR_{\alpha}} = M_{SR_{\alpha}}^{-1} N_{SR_{\alpha}} = [(I - D_1 - D_2) - (L - R_{\alpha} + R_{\alpha}L + E_1 + E_2)]^{-1} (U - S + SU)$$
(11)

Theorem 3.1 Let A_1 and A_2 be the coefficient matrices of linear system (4) and (8), respectively. M_{UR_a} , N_{UR_a} , M_{SR_a} and N_{SR_a} are defined by (5),(6),(9) and (10), respectively. Let A

be a nonsingular M -matrix. Suppose that $0 \le \sum_{j=k+1}^{n} a_{kj} a_{jk} < 1$, $0 \le \sum_{i=1}^{n-1} \alpha_i a_{ni} a_{in} < 1$ and $0 \le \alpha_i \le 1$

for $i = 1, 2, \dots, n-1$. Then $A_1 = M_{UR_{\alpha}} - N_{UR_{\alpha}}$ and $A_2 = M_{SR_{\alpha}} - N_{SR_{\alpha}}$ are weak regular splitting of A_1 and A_2 , respectively.

Proof. First, we prove that $A_1 = M_{UR_{\alpha}} - N_{UR_{\alpha}}$ is weak regular splitting of A_1 . Since A is nonsigular M-matrix, $0 \le \sum_{j=k+1}^{n} a_{kj}a_{jk} < 1$, $0 \le \sum_{i=1}^{n-1} \alpha_i a_{ni}a_{in} < 1$ and $0 \le \alpha_i \le 1$, $M_{UR_{\alpha}}^{-1} = [(I - D_0 - D_1) - (L - R_{\alpha} + R_{\alpha}L + E_1 + E_0)]^{-1}$ $= [I - (I - D_0 - D_1)^{-1}(L - R_{\alpha} + R_{\alpha}L + E_1 + E_0)]^{-1}(I - D_0 - D_1)^{-1}$ $= \{I + (I - D_0 - D_1)^{-1}(L - R_{\alpha} + R_{\alpha}L + E_1 + E_0) + [(I - D_0 - D_1)^{-1}(L - R_{\alpha} + R_{\alpha}L + E_1 + E_0)]^2 + \cdots \}(I - D_0 - D_1)^{-1}$ ≥ 0

We know that $N_{UR_{\alpha}} = F_0 + U^2 \ge 0$. Therefor, $M_{UR_{\alpha}}^{-1} N_{UR_{\alpha}} \ge 0$. By Definition 2.3, we obtain that $A_1 = M_{UR_{\alpha}} - N_{UR_{\alpha}}$ is weak regular splitting of A_1 .

Now, we will prove that $A_2 = M_{SR_a} - N_{SR_a}$ is weak regular splitting of A_2 .

Since A is a nonsingular M-matrix, we have $0 \le a_{ii+1}a_{i+1i} < 1$ for $i = 1, 2, \dots, n-1$. According

to
$$0 \leq \sum_{i=1}^{n-1} \alpha_i a_{ni} a_{in} < 1$$
 and $0 \leq \alpha_i \leq 1 \ (i = 1, 2, \dots, n-1)$, we obtain that
 $M_{SR_{\alpha}}^{-1} = [(I - D_1 - D_2) - (L - R_{\alpha} + R_{\alpha}L + E_1 + E_2)]^{-1}$
 $= [I - (I - D_1 - D_2)^{-1}(L - R_{\alpha} + R_{\alpha}L + E_1 + E_2)]^{-1}(I - D_1 - D_2)^{-1}$
 $= \{I + (I - D_1 - D_2)^{-1}(L - R_{\alpha} + R_{\alpha}L + E_1 + E_2) + [(I - D_1 - D_2)^{-1}(L - R_{\alpha} + R_{\alpha}L + E_1 + E_2)]^2 + \cdots \} (I - D_1 - D_2)^{-1}$
 ≥ 0

We know that $N_{SR_{\alpha}} = U - S + SU \ge 0$. By Definition 2.3, we obtain that $A_2 = M_{SR_{\alpha}} - N_{SR_{\alpha}}$ is weak regular splitting of A_2 . This completes the proof.

Theorem 3.2 Let A_1 and A_2 be the coefficient matrices of linear system (4) and (8), respectively. M_{UR_a} , N_{UR_a} , M_{SR_a} and N_{SR_a} are defined by (5),(6),(9) and (10), respectively. Let A

be a nonsingular M -matrix. Suppose that $0 \le \sum_{j=k+1}^{n} a_{kj} a_{jk} < 1$, $0 \le \sum_{i=1}^{n-1} \alpha_i a_{ni} a_{in} < 1$ and $0 \le \alpha_i \le 1$

for $i=1,2,\cdots,n-1$. Then $\rho(M_{UR_{\alpha}}^{-1}N_{UR_{\alpha}}) \leq \rho(M_{SR_{\alpha}}^{-1}N_{SR_{\alpha}})$.

Proof. For a positive vector x and A is a nonsingular M -matrix,

 $A_{\mathrm{I}}x = (I+R_{\alpha}+U)Ax \geq (I+R_{\alpha}+S)Ax \geq 0$. We have

$$M_{SR_{\alpha}} - M_{UR_{\alpha}} = (I - D_1 - D_2) - (L - R_{\alpha} + R_{\alpha}L + E_1 + E_2)$$

-[(I - D_0 - D_1) - (L - R_{\alpha} + R_{\alpha}L + E_1 + E_0)]
= (D_0 + E_0) - (D_2 + E_2)
= (D_0 + E_0) - SL \ge 0
(12)

By Theorem 3.1, we know that $M_{UR_{\alpha}}^{-1} \ge 0$ and $M_{SR_{\alpha}}^{-1} \ge 0$. Pre-multiplying and post-multiplying

(12) by $M_{UR_{\alpha}}^{-1}$ and $M_{SR_{\alpha}}^{-1}$, respectively, we have

$$M_{UR_{\alpha}}^{-1} - M_{SR_{\alpha}}^{-1} \ge 0$$

Thus, $M_{UR_{\alpha}}^{-1} \ge M_{SR_{\alpha}}^{-1}$. By Lemma 2.3 and Theorem 3.1, we obtain that

 $\rho (M_{UR_{\alpha}}^{-1}N_{UR_{\alpha}}) \leq \rho (M_{SR_{\alpha}}^{-1}N_{SR_{\alpha}})$

This completes the proof.

Remark If $\alpha_i = 1$ for $i = 1, 2, \dots, n-1$, Theorem 3.2 becomes the result of Theorem 4.3 in

[1].

IV Numerical example

In this section, we give the following example to illustrate the results obtained in section 3.

Example The coefficient matrix A of (1) is given by

	(1	-0.2	-0.3	-0.1	-0.2
	-0.1	1	-0.1	-0.3	-0.1
A =	-0.2	-0.1	1	-0.1	-0.2
	-0.2	-0.1	-0.1	1	-0.3
	(-0.1)	-0.2	-0.2	-0.1	1)

We see that A satisfies the condition of Theorem 3.1 and Theorem 3.2.

If $\alpha_1 = 0.1$, $\alpha_2 = 0.2$, $\alpha_3 = 0.2$, $\alpha_4 = 1$, we denote the spectral radius of the preconditioned Gauss-Seidel iterative matrix with the preconditioners P_1 and P_2 by $\rho (M_{U_1R_a}^{-1}N_{U_1R_a})$ and $\rho (M_{S_1R_a}^{-1}N_{S_1R_a})$, respectively.

If $\alpha_1 = 0.2$, $\alpha_2 = 0.5$, $\alpha_3 = 1$, $\alpha_4 = 0.2$, we denote the spectral radius of the preconditioned

Gauss-Seidel iterative matrix with the preconditioners P_1 and P_2 by $\rho (M_{U_2R_a}^{-1}N_{U_2R_a})$ and $\rho (M_{S_2R_a}^{-1}N_{S_2R_a})$, respectively.

If $\alpha_1 = 0.8$, $\alpha_2 = 0.2$, $\alpha_3 = 0.3$, $\alpha_4 = 0.5$, we denote the spectral radius of the preconditioned Gauss-Seidel iterative matrix with the preconditioners P_1 and P_2 by $\rho (M_{U_3R_\alpha}^{-1}N_{U_3R_\alpha})$ and $\rho (M_{S_3R_\alpha}^{-1}N_{S_3R_\alpha})$, respectively.

If $\alpha_1 = 0.1$, $\alpha_2 = 1$, $\alpha_3 = 1$, $\alpha_4 = 1$, we denote the spectral radius of the preconditioned Gauss-Seidel iterative matrix with the preconditioners P_1 and P_2 by $\rho (M_{U_4R_\alpha}^{-1}N_{U_4R_\alpha})$ and $\rho (M_{S_4R_\alpha}^{-1}N_{S_4R_\alpha})$, respectively.

If $\alpha_1 = 0.9$, $\alpha_2 = 0.4$, $\alpha_3 = 0.8$, $\alpha_4 = 0.5$, we denote the spectral radius of the preconditioned Gauss-Seidel iterative matrix with the preconditioners P_1 and P_2 by $\rho (M_{U_5R_\alpha}^{-1}N_{U_5R_\alpha})$ and $\rho (M_{S_5R_\alpha}^{-1}N_{S_5R_\alpha})$, respectively. Then we obtain the Table 1.

i	$\rho \ (M_{U_i R_\alpha}^{-1} N_{U_i R_\alpha})$	$\rho \ (M_{S_iR_\alpha}^{-1}N_{S_iR_\alpha})$
<i>i</i> = 1	0.1818	0.3313
<i>i</i> = 2	0.1745	0.3110
<i>i</i> = 3	0.1732	0.3137
<i>i</i> = 4	0.1570	0.2724
<i>i</i> = 5	0.1670	0.3002

Table 1 The comparison of the spectral radius of preconditioned Gauss-Seidel iterative matrix with the preconditioners P_1 and P_2

From Table 1, we can see that $\rho (M_{UR_{\alpha}}^{-1}N_{UR_{\alpha}}) \leq \rho (M_{SR_{\alpha}}^{-1}N_{SR_{\alpha}}).$

Conjectures In this paper, the preconditioners P_1 and P_2 are generalized to the preconditioners with multi-parameters, the result may be correct.

References

[1] J.Y.Yuan. D.D.Zontini, "Comparison theorems of preconditioned Gauss-Seidel methods for M-matrices," App.Math.Comput.,V219, pp.1947-1957,2012.

[2] A.D.Gunawardena, S.K.Jain, L.Snyder, "Modified iterative methods for consistent linear systems," Linear Algebra Appl., V154-156, pp.123-143,1991.

[3] D.J.Evans, M.M.Martins, M.E.Trigo, "The AOR iterative method for new preconditioned linear systems," J.Comput.Appl.Math. V132, pp.461-466,2001.

[4] H.Kotakemori, K.Harada, M.Morimoto, H.Niki, "A comparison theorem for the iterative method with the preconditioner $(I + S_{max})$," J.Comput.Appl.Math., V145,pp.373-378,2002.

[5] A.Hadjidioms, D.Noutsos, M.Tzoumas, "More on modifications and improvements of classical iterative schemes for M-matrices," Linear Algebra Appl., V364,pp.253-279,2003.

[6] H.Niki, K.Harada, M.Morimoto, M.Sakakihara, "The survey of preconditioners used for accelerating the rate of convergence in the Gauss-Seidel method," J.Comput.Appl.Math., V164-165,pp.587-600,2004.

[7] L.Y.Sun, "A comparison theorem for the SOR iterative method," J.Comput.Appl.Math., V181,pp.336-341,2005.

[8] J.H.Yun, "Comparison results of the preconditioned AOR methods for L-matrices," Appl.Math.Comput., V218,pp.3399-3413,2011.

[9] A.J.Li, "A new preconditioned AOR iterative method and comparison theorems for linear systems," IAENG Internationa Journal of Applied Mathematics, V42,pp.161-163,2012.

[10] R.S.Varga, Matrix Iterative Analysis, Prentice-Hall, Englewood cliffs.NJ, 1962.

[11] D.M.Young, Iterative solution of large Linear systems. New York, Academic.1971.

[12]Y.T.Li, S.F.Yang, "A multi-parameters preconditioned AOR iterative method for linear

systems," Appl.Math.Comput., V206,pp.465-473,2008.