
 

  

 

 

 

ISSN-4567-7860 

JOURNAL OF ELECTRICAL AND ELECTRONINS ENGINEERING 

VOL 2 ISSUE 4 APRIL 2015 Paper 5 

Abstract— This paper is review of finding shortest path to 

destination by avoiding the obstacles using Dijkstra’s 

algorithm to move robot from source to destination. 

Today’s technology is making its way into our daily lives. 

Goal of the proposed work is to design and implement a 

real-time robot. A robot has been designed, prototyped, 

such that it involves various applications in innovative 

technologies like accident avoidance and moving through 

the shortest path in a harsh industrial environment. The 

concept of “Anti-Collision and shortest path” is one of the 

solutions to it. Microcontroller is the heart of robot where 

robot is moving blindly as per the instructions given by 

microcontroller.  Microcontroller instructions are given 

through MAT lab program which calculates the shortest 

path to the destination. 

Index Terms—obstacle avoidance, dijkstra algorithm, RF 

module 

I. INTRODUCTION 

 

Technology today is making its way into our daily lives. 

This paper reviews finding shortest path to reach destination 

by avoiding the obstacles, Dijkstra’s algorithm logic is used to 

find the shortest path and to guide the robot. This paper will be 

a review about the vehicle or device control for avoiding 

accident and finding the shortest path by different algorithms. 

By knowing the  Cartesian points of the three points(locations) 

we can find the angle between the two lines with respect to the 

reference line x-axis. Dijkstra’s algorithm also explains the 

logic which is used to compute the shortest path using 

MATLAB code. 

The central processing unit consists of a camera and a 

processor. The image is captured by the camera, and the robot 

position is located in the image using the MATLAB. The 

destination to which the robot has to reach is identified by the 

user. Depending on the destination provided, the MATLAB 

code identifies the shortest path. The shortest path to the 

destination is notified to the robot with the help of RF 

transmitter. 

At the receiving end the RF receiver decodes the received 

data. Microcontroller is programmed to control dc motor upon 

receiving the data from the computer. The robot traverse the 

path specified by the computer. 

The central processing unit captures an image every 500 ms 

and provides an alternative path for the robot to reach its 

destination if there are any dynamic obstacles in the path. It 

also provides the makes sure that the robot follows the path 

specified by the computer. Hence providing a feedback path. 

 Control method for moving robot in closed area is based on 

creation and sharing maps through shortest path finding and 

obstacle avoidance is proposed.[1]Through simulation study, a 

validity of this method is confirmed. Furthermore, the effect of 

map sharing among robotics is also confirmed together with 

obstacle avoidance with ultrasonic sensors.[1] 

The real-time path-planning[2] problem for autonomous 

robots is considered with the presence of arbitrary moving and 

static obstacles in the workspace. It is solved as a dynamic 

shortest route problem by adapting Dijkstra's algorithm to the 

workspace motion-scene graphs generated at successive scan 

intervals. In this obstacle-avoidance scheme, the robot takes 

the relative importance of detected obstacles into 

consideration [2]. This is the path planning problem for 

autonomous mobile robots that executes obstacle-avoidance. 

ROBOT has sufficient intelligence[3] [8] to cover the 

maximum area of provided space. It has an infrared sensor 

which is used to sense the obstacles coming in between the 

path of ROBOT. It will move in a particular direction and 

avoid the obstacle which is coming in its path. Autonomous 

Intelligent Robots are robots that can perform desired tasks in 

unstructured environments without continuous human 

guidance. 

A low cost solution[4] to obstacle avoidance for a mobile robot 

and dynamic steering algorithm which ensures that the robot 

doesn't have to stop in front of an obstacle which allows robot 

to navigate smoothly in an unknown environment avoiding 

collisions. Obstacle avoidance strategy and working of robot is 

greatly dependent on the detection of obstacles by sensors and 

corresponding to the response of robot [6]. 

 

Path plan for autonomous robot is based on image processing 

techniques in the unknown environment. The system finds and 

analyzes an optimal path for robots, while avoiding obstacles 

along the way. The environment is first captured as an image 

using a camera. Obstacles detecting methods are then 

performed to identify the existence of obstacles within the 

A Review on Remotely Controlled Vision Based Industrial 

Robot for optimum movement 

 
NAVEEN KUMAR C., AMRUT ANILRAO PUROHIT 

cnaveenkumar71@gmail.com,amrutpurohit@revainstitution.org 

Department of Electronics and Communication Engineering, 

REVA Institute of Technology and Management, Bangalore 560064 

 

mailto:cnaveenkumar71@gmail.com
mailto:amrutpurohit@revainstitution.org


 

  

 

 

 

ISSN-4567-7860 

JOURNAL OF ELECTRICAL AND ELECTRONINS ENGINEERING 

VOL 2 ISSUE 4 APRIL 2015 Paper 5 

unknown environment [8] recognized as obstacles and then 

shortest path is obtain by A-Star algorithm. A* is commonly 

used for the common path finding problem in applications 

such as games, but was originally designed as a general graph 

traversal algorithm[5]. 
 

 

II. ALGORITHMS 

 

The Shortest Path problem is defined on a directed, weighed 

graph, where the weights may be taken as distances. The 

objective is to find a path from a source node to destination 

node,  that minimizes the sum of weights along the path. 

The Shortest Path Problem (SPA) is one of the fundamental 

and most important in combinatorial problem.SPA is an 

important problem in graph theory and has applications in 

communications, transportation and electronic problem. Here 

different algorithm is described for solving SPA. 

a) The Bellman-Ford algorithm 

The Bellman-Ford algorithm solves the single-source 

shortest-path problem in the general case in which edge 

weights may be negative. Given a weighed, directed graph G 

= (V, E) with source s and weight function w : E → R, the 

Bellman-Ford algorithm returns a Boolean value indicating 

whether there is  negative-weight cycle that is reachable from 

the source. If there is such a cycle, the algorithm indicates that 

no solution exists. If there is no such cycle, the algorithm 

produces the shortest paths and their weights. 

The algorithm uses relaxation, progressively decreasing an 

estimate d[v] on the weight of a shortest path from the source 

s to each vertex v * V until it achieves the actual shortest-path 

weight δ(s, v).  

The algorithm returns TRUE if and only if the graph contains 

no negative-weight cycles that are reachable from the source. 

b) Directed acyclic graphs 

      By relaxing the edges of a weighted dag (directed acyclic 

graph) G = (V, E) according to a topological sort of its 

vertices, we can compute shortest paths from a single source 

in (V + E) time. Shortest paths are always well defined in a 

dag, since even if there are negative-weight edges, no 

negative-weight cycles can exist. 

    The algorithm starts by topologically sorting the dag to 

impose a linear ordering on the vertices. If there is a path from 

vertex u to vertex v, then u precedes v in the topological sort. 

We just make one pass over the vertices in the topologically 

sorted order. As we process each vertex, each edge leaving the 

vertex is relaxed. 

c) Johnson’s algorithm 

Algorithm solves all pair shortest paths in a sparse weighed 

directed graph. It allows some of the edge weights to be 

negative numbers, but no negative-weight cycles exist.. 

Johnson’s algorithm uses as subroutines of both Dijkstra’s 

algorithm and the Bellman-Ford algorithm. 

 

 

 

d) Dijkstra’s algorithm 

Dijkstra’s algorithm solves the single-source shortest-paths 

problem on a weighed, directed graph G = (V, E) for the case 

in which all edge weights are non-negative. In this section, 

therefore, we assume that w(u, v) ≥ 0 for each edge (u, v)  E. 

As we see a good implementation, the running time of 

Dijkstra’s algorithm is lower than that of the Bellman-Ford 

algorithm. 

Application of Dijkstra’s Algorithm 

  Robot path planning  

  Logistics Distribution Lines 

  Link-state routing protocols  

 Open Shortest Path First 

 Intermediate System to Intermediate System 

The Bellman-Ford algorithm and Dijkstra’s algorithm 

proved to be much more efficient than brute-force, with 

Dijkstra proving to run in the least amount of time for very 

large networks. It appears that for complete and fully meshed 

networks the Bellman-Ford algorithm actually run faster than 

Dijkstra’s algorithm for networks of size 425 or less. 

     Let the node at which we are starting be called the initial 

node. Let the distance of node Y be the distance from 

the initial node to Y. Dijkstra's algorithm will assign some 

initial distance values and will try to improve them step by 

step. 

1. Assign a tentative distance value to every node: set 

initial node as zero and infinity for all other nodes. 

2. Mark all nodes unvisited. Set the initial node as 

current. Create a set of the unvisited nodes called 

the unvisited set consisting of all the nodes. 

3. For the current node, consider all of its unvisited 

neighbors and calculate their tentative distances. 

Compare the newly calculated tentative distance to 

the current assigned value and assign the smaller 

one. Otherwise, keep the current value. 

4. When we are done considering all of the neighbors of 

the current node, mark the current node as visited 

and remove it from the unvisited set. A visited node 

will never be checked again. 

5. If the destination node has been marked visited 

(when planning a route between two specific nodes) 

or if the smallest tentative distance among the nodes 

in the unvisited set is infinity (when planning a 

complete traversal; occurs when there is no 



 

  

 

 

 

ISSN-4567-7860 

JOURNAL OF ELECTRICAL AND ELECTRONINS ENGINEERING 

VOL 2 ISSUE 4 APRIL 2015 Paper 5 

connection between the initial node and remaining 

unvisited nodes), then stop. The algorithm has 

finished. 

6. Select the unvisited node that is marked with the 

smallest tentative distance, and set it as the new 

"current node" then go back to step 3. 

 

 

 
 

Figure2: shows the working of algorithm 

 

e) A* Algorithm 

A* algorithm is a graph search algorithm that finds a path 

from a given initial node to a given goal node. It employs a 

"heuristic estimate" h(x) that gives an estimate of the best 

route that goes through that node. It visits the nodes in order of 

this heuristic estimate. It follows the approach of best first 

search. The secret to its success is that it combines the pieces 

of information that Dijkstra’s algorithm uses and information 

of Best- First-Search. In the standard terminology used when 

talking about A*, g(n)represents the exact cost of the path 

from the starting point to any vertex n, and h(n) represents the 

heuristic estimated cost from vertex n to the goal. 

Dijkstra's is essentially the same as A*, except there is no 

heuristic (H is always 0), because it has no heuristic. It 

searches by expanding out equally in every direction. But A* 

scans the area only in the direction of destination. As we 

might imagine, because of this Dijkstra's it usually ends up 

exploring a much larger area before the target is found. This 

generally makes it slower than A*. But both have their own 

importance. For example A* is mostly used when we know 

both the source and destination. Dijkstra’s is used when we 

don't know where our target destination is. Say you have a 

resource-gathering unit that needs to go get some resources of 

some kind. It may know where several resource areas are, but 

it should approach closer one. In this case, Dijkstra's is better 

than A* because we don't know which one is closest. Our only 

alternative is to repeatedly use A* to find the distance to each 

one, and then choose that path. There are probably countless 

similar situations for the kind of location we might be 

searching for. In order to find the closest one, but we don’t 

find where it is or which one is closest. So, A* is better when 

we know both starting point and destination point. A* is both 

complete and optimal if you use an Admissible heuristic 

function. If the function is not admissible - all bets are off. 

 

 

III. IMPLIMENTATION METHODOLOGY 

 

IR sensor or ultrasonic sensor are used to detect obstacles 

and the alternative routes can be taken to avoid the obstacle. 

To calculate the shortest path from source to destination 

continuously and also to track the dynamic obstacles. The 

camera is used to capture the images and constantly monitor 

the movement of the robot and the obstacles. The images are 

processed to find the obstacles in between source and 

destination. Upon processing the image, the shortest path is 

identified and the robotic motions are controlled. The robot 

upon finding an obstacle stops and intimates the computer 

about the obstacle in its path. The computer reroutes the path 

and guide the robot through the new path. RF transmission is 

used to communicate between the robot and the computer, as 

it is cost effective. MATLAB is used to process the images 

and provide the shortest path. 

By knowing the three Cartesian points the angles of the two 

lines making with respect to the reference line x-axis can be 

found, if angle is taken either clockwise or anti-clockwise 

there are chances of getting negative angle depending on the 

position of two lines, to make it positive subtract it from 

360°.There fore, the angle between the two lines with respect 

to the reference line is calculated as shown in the figure 

below. 

 
 

Figure1: showing robot front, back, next node and the 

destination 

 

Therefore the angle formed between the two lines (theta) 

with respect to the reference line that joins at the common 

point is calculated. To know that, we need to know the 

distance of the two lines by using Equ(1) &Equ(2). 

 

𝑅1  = √(𝐵𝑥 − 𝐹𝑥)2 + (𝐵𝑦 − 𝐹𝑦)2 … … … … … … … . 𝐸𝑞𝑢 (1)  

𝑅2  = √(𝑁𝑥 − 𝐵𝑥)2 + (𝑁𝑦 − 𝐵𝑦)2 … … … … … … . . 𝐸𝑞𝑢 (2) 

F 

B/S  

D  

N  

 

 

 

9 

N  

 

 

 

9 

S (source node) 

D (destination node) 

N (intermediate node) 

F (front)  

B (back) 

 
Reference line 

Ø1 

Ø2 



 

  

 

 

 

ISSN-4567-7860 

JOURNAL OF ELECTRICAL AND ELECTRONINS ENGINEERING 

VOL 2 ISSUE 4 APRIL 2015 Paper 5 

 

 

To calculate the angle forming between the line and the 

reference line individually, therefore two angles are formed 

separately for two lines with respect to the reference line x-

axis.by using Equ(3), Equ(4), the formulae are given below. 

 

)4...(....................).........2/)cos((2

)3....(....................).........1/)cos((1

RBxNx

RFxBx





  

Initially check which of the two angles is greater, to make 

the decision to move left or right and then if the angle is more 

than the threshold value then it should turn in the opposite 

direction, if the angle is less than threshold then move 

forward. Here time taken to move forward i.e., forward time 

and turn time (left/right) can be adjusted in the robot program. 

The turn time should made as optimal as possible for quicker 

response time, Therefore it should be set by trial and error 

basis  and also the value depends on motor specification and 

weight of the vehicle. 

 

    The robot moves forward when the angle falls within the 

threshold limit, if not it stops and checks for the threshold, and 

it continues to turn till it falls in the threshold region. The 

image is captured continuously in a real time so that the 

dynamic obstacles are avoided to calculate the shortest path 

from the recent captured image till it reaches the destination. 

 Case (1): When both Ø1 & Ø2 are positive and Ø1 

>Ø2, so  move left. 

 Case (2) When both Ø1 & Ø2 are positive and Ø1 

<Ø2, so move right. 

 Case (3) When Ø1 is negative & Ø2 is positive 

Ø1=2π-Ø1 and then if Ø1 <Ø2, so move left. 

 Case (4) When Ø1 is positive & Ø2 is negative 

Ø2=2π-Ø2 and then if Ø1 <Ø2, so move right. 

 Case (5) When both Ø1 & Ø2 are negative Ø1=2π-

Ø1 and Ø2=2π-Ø2 then if Ø1<Ø2, so move left. 

 Case (6) When both Ø1 is positive & Ø2 are negative 

Ø1=2π-Ø1 and Ø2=2π-Ø2 then if Ø1 >Ø2, so move 

right. 

IV. CONCLUSION 

Some of the algorithms explained in this paper would be used 

to control the movement of the robot by avoiding the obstacle 

and finding the shortest path to reach destination. Here we can 

conclude that Dijkstra’s algorithm and by using visual sensors 

finding an obstacle is easier compared to Dynamic Obstacle-

Avoidance proposed [2].  

REFERENCE 

[1] Moving Domestic Robotics Control Method Based 

on Creating and Sharing Maps with Shortest Path 

Findings and Obstacle Avoidance (IJARAI) 

International Journal of Advanced Research in 

Artificial Intelligence, Vol. 2, No. 

 

[2] A Dynamic Obstacle-Avoidance Scheme for 

Autonomous  Robots[2014]  O.S. Asaolu*, V.O.S. 

Olunloyo, Department of Systems Engineering, 

University of Lagos, Nigeria 

 

[3] OBSTACLE AVOIDING ROBOT-International 

Journal of Advanced Research in Electrical, 

Electronics and Instrumentation EngineeringVol. 2, 

Issue 4, April 2013 

 

[4] Low Cost Obstacle Avoidance 

RobotVivekHanumante, Sahadev Roy, 

SantanuMaityInternational Journal of Soft 

Computing and Engineering (IJSCE)ISSN: 2231-

2307, Volume-3, Issue-4, September 2013 

 

[5] An Image Based Path Planning Using A – 

StarAlgorithm HerambNandkishor Joshi, Prof J. P. 

Shinde,International Journal of Emerging Research in 

Management &Technology ISSN: 2278-9359 

(Volume-3, Issue-5)-2014 

 

[6] Basem M. ElHalawany, HalaM.Abdel-Kader, 

AdlyTagEldeen, AlaaEldeenElsayed “Modified A* 

Algorithm for Safer Mobile Robot Navigation” 

U2013 Proceedings of International Conference on 

Modelling, Identification & Control (ICMIC)Cairo, 

Egypt, 31stAug.- 2nd Sept. 2013  

 

[7]   Wang Shaokun, Xiao Xiao, and Zhao Hongwei, 

"The Wireless Remote Control Car System Based on 

ARM9," in Instrumentation, Measurement, 

Computer, Communication and Control, International 

Conference on , October 2011 , pp. 887-890.  

[8]  Ding Chengjun, Yan Bingsen, and Duan Ping, "The 

Remote Control of Mobile Robot Based on 

Embedded Technology," in Measuring Technology 

and Mechatronics Automation, International 

Conference on , January 2011, pp. 907-910.  

[9] NiuZhigang and Wu Yanbo, "Research on Wireless 

Remote Control for Coal Mine Detection Robot," in 

Digital Manufacturing and Automation, International 

Conference on , December 2010 , pp. 315-318.  

[10] Ofir H Goldstain, Irad Ben-Gal, and Yossi Bukchin, 

"Evaluation of Telerobotic Interface Components for 

Teaching Robot Operation," in IEEE 

TRANSACTIONS ON LEARNING 

TECHNOLOGIES, 2011, pp. 365-376.  

[11] NiuZhigang and Wu Yanbo, "Research on Wireless 

Remote Control for Coal Mine Detection Robot," in 



 

  

 

 

 

ISSN-4567-7860 

JOURNAL OF ELECTRICAL AND ELECTRONINS ENGINEERING 

VOL 2 ISSUE 4 APRIL 2015 Paper 5 

Digital Manufacturing and Automation, International 

Conference on, December 2010, pp. 315-318.  

[12] EvsyakovArtem Dmitry Bagayev, "System remote 

control of the robotized complex - Pegas," in East-

West Design & Test Symposium , September 2010 , 

pp. 358-361.  

 

[13] Dijkstra, E.W. (1959). A note on two problems in 

connexion with graphs. In NumerischeMathematik, 1 

(1959), S. 269 ～ 271.  

 

[14] Huijuan Wang et. al , “Application of Dijkstra 

algorithm in robot path-planning”, Second 

International Conference 

on Mechanic Automation and Control Engineering 

(MACE), pp. 1067 - 1069 ,2011 

 

[15] N. L. Cassimatis, J. G. Traftonb, M. D. Bugajskab 

and A. C. Schultz, ―Integrating cognition, 

perception and action through mental simulation in 

robots.‖ Robotics and Autonomous Systems, 49: 13–

23, 2004.  


