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ABSTRACT 

 
This research paper presents performance evaluation of Sort Algorithms like Insertion, Merge Sort and gives their 

performance analysis with respect to time complexity. These two algorithms has been an area of focus for a long time but 

still the question remains the same of “which to use when?” which is the main reason to perform this research. This research 

provides a detailed study of how all the four algorithms work and then compares them on the basis of various parameters 

apart from time complexity to reach our conclusion. 
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INTRODUCTION 
In the present scenario an algorithm and data structure play a significant role for the implementation and design of any  

software. In data domain, sorting refers to the operation of arranging numerical data in increasing or decreasing order or 

non numerical data in alphabetical order[1]. Among insertion and Merge it would be interesting to see their worst case 

complexities which are O(N^2) and O(NlogN)respectively. The efficiency of a sorting algorithm depends on how fast and 

accurately it sorts a list and also how much space it requires in the memory. Among all, it can be seen that insertion perform 

with the order of n^2 contrast to heap and merge performing with the order of nlogn. On the other hand if we study their 

space complexity we will find that the insertion have the complexity of the O(1) where as the space complexity of merge sort 

is O(n). So to assess the performance of an algorithm the above two parameters are  most important in their own. 

 

WORKING PROCEDURE OF ALGORITHMS 
A.  INSERTION SORT: 

This algorithm considers the elements one at a time, inserting each in its suitable place among those already considered  

(keeping them sorted). Insertion sort is an example of an incremental algorithm. It builds the sorted sequence one 

element at a time.  

1) Algorithm : 

We use a procedure INSERTION_SORT. It takes an array A[1.. n] as parameter. The array A is sorted in place: the  

numbers are rearranged within the array, with at most a constant number outside the array at any time. 

The algorithm for insertion sort is as follows: 

 

INSERTION_SORT (A) 

1.   FOR j ← 2 TO length[A]  

2.   DO  key ← A[j]     

3.   {Put A[j] into the sorted sequence A[1 . . j - 1]}    

4.    i ← j - 1     

5.   WHILE i > 0 and A[i] > key 

6.        DO A[i +1] ← A[i]             

7.         i ← i - 1      

8.        A[i + 1] ← key 
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Figure shows the process of  insertion sorting 

 

2) Time Complexity of Insertion Sort[10]- 

Since the running time of an algorithm on a particular input is the number of steps executed, we must define "step"  

independent of machine. We say that a statement that takes ci steps to execute and executed n times contributes ci* n to the 

total running time of the algorithm. To compute the running time, T(n), we sum the products of the cost and times 

column. That is, the running time of the algorithm is the sum of running times for each statement executed. So, we have 

 
In the above equation we supposed that t  be the number of times the while-loop (in line 5) is executed for that value of j. 

Note that the value of j runs from 2 to (n - 1). We have 

 
 

   

i. Best-Case Analysis[12]: 

The best case occurs if the array is already sorted. For each value of  j = 2, 3, ..., n, we find that A[i] is less than or equal 

to the key when i has its initial value of (j - 1). In other words, when i = j -1, always find the key A[i] upon the first time 

the WHILE loop is run. Therefore, tj = 1 for j = 2, 3, ..., n and the best-case running time can be computed using equation (2) 

as follows: 

 
This running time can be expressed as an + b for constants a and b that depend on the statement cost ci.Therefore, T(n) it 

is a linear function of n. The main concept here is that the while-loop in line 5 executed only once for each j. This happens if 

given array A is already sorted. 

T(n) = an + b = O(n) 

It is a linear function of n. 

 

ii. Worst-Case Analysis[13]: 

The worst-case occurs if the array is sorted in reverse order i.e., in decreasing order. In the reverse order, we always find 

that A[i] is greater than the key in the while-loop test. So, we must compare each element A[j] with each element in the 

entire sorted subarray A[1 .. j - 1] and so t j  = j for j = 2, 3, ..., n. Equivalently, we can say that since the while-loop exits 

because i reaches to 0, there is one additional test after (j - 1) tests. Therefore, t j  = j for j = 2, 3, ..., n and the worst-case 

running time can be computed using equation (2) as follows: 

 
This running time can be expressed as (an2 + bn + c) for constants a, b, and c that again depends on the statement costs c. 

Therefore, T(n) is a quadratic function of n. Here the main concept is that the worst-case occurs, when line 5 executed j 

times for each j. This can happens if array A starts out in reverse order 

T(n) = an2 + bn + c = O(n2) 

It is a quadratic function of n2. 

 

B. MERGE SORT: 

This algorithm is also based on Divide-and-Conquer approach. Given a sequence of elements also called keys  c[1],….,c[n], 

the general idea is to imagine them split into two sets c[1],….c[+n/2+] and c[+n/2++1],….,c[n].Each set is individually 

sorted and the resulting sorted sequence are merged to produce a single sorted sequence of n elements.   

1) Algorithm : The algorithm is divided into two parts: the first part will be procedures MERGEPASS, which is used to 

execute a single pass of the algorithm and the second part will repeatedly apply MERGEPASS until C is sorted. Algorithm 

MERGEPASS(C,N,L,D): The N element array A is composed of sorted sub arrays where each sub array has L elements 
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possibly the last sub array, which may have fewer than L elements. The procedure merges the pairs of sub arrays of C and 

assigns them to the array D. Dividing n by 2*L, we obtain the quotient Q, which tells the number of pairs of L-element 

sorted sub arrays ; that is Q=INTEGER(N/(2*L)). 

 

 
Figure shows the process of merge sorting 

 

1) Set Q= INTEGER(N/(2*L)), S:=2*L*Q(total no. of elements in Q pairs of sub arrays, and R=N-S(no. of remaining 

elements) 

2) Merge the Q pairs of sub arrays.[repeat for J=1,2,….Q:  

a) Set LB(lower bound):=1+(2*J-2)*L. 

b) Call MERGE(C, L, LB, A, L, LB, D, LB). 

[end of loop.]  

3. [only one sub array left?] 

If R<=L, then: 

Repeat for j=1,2,….R: 

Set D(S+J):=C(S+J). 

[end of loop.] 

Else: call MERGE(C,L,S+1,C,R,L+S+1,B,S+1). 

[end of if structure.] 

4. return. 

Algorithm MERGESORT(C,N) 

This algorithm sorts the N-element array C using an auxiliary array D. 

1. set L:=1.[initialize the no. of elements in the sub arrays.] 

2. Repeat steps 3 to 6 while L<N: 

3.call MERGEPASS(C,N,L,D). 

4.call MERGEPASS(D,N,2*L,A). 

5. set L:=4*L. 

[end of step 2 loop.] 

6. exit. 

 

2) Time Complexity Of Merge Sort: 

The recurrence relation for the merge sort is as follows: 

2T(n/2)+cn 

When n=power of 2,n=2k 

, solving the above recurrence relation by successive substitution we get: 

T(n)=2(2T(n/4)+cn/2)+cn  

       = 4T(n/4)+2cn 

       = 4(2T(n/8)+cn/4)+2cn 

           - 

           - 

           - 

        = 2 k 

 

=T(1)+kcn  

= an+cnlog n 

 2 k<n<2 k+1 

T(n)<=T(2 k+1) 

Therefore, T(n)=O(nlogn) 

Time complexity for heap sort in average as well as worst case lies the same i.e T(n)=O(nlogn). 
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III. EXPERIMENT AND RESULT TO MEASURE THE PERFORMANCE OF ALGORITHMS 

In this experiment we have used Turbo C++ 3.0 compiler in which the data set contains random numbers. The initial 

range of data set starts from 50 to 10000 elements with increment of 100 elements and later the size of elements 

increased and reached to 30000 with the interval of 1000 elements. Table1 shows this data set and clock tick 

measurement and the table 2 shows the total time taken by the algorithm in seconds to sort the elements. The table 3 

shows the comparative study of their characteristics, time as well as space complexities. 

 

TABLE 1: shows the number of clock ticks taken by the two algorithms for sorting 

 

 
 

TABLE 2: shows time taken(in seconds) by the two algorithms to sort array 

 
 

TABLE 3: shows comparison of the two sorting techniques on various parameters 

 
 

CONCLUSION 

From the above analysis it can be said that in a list of random numbers from 10000 to 30000, insertion sort takes more 

time to sort as compare to merge sorting techniques. If we take worst case complexity of all the two sorting techniques then 

insertion sort technique gives the result of the order of N^2, but here if one needs to sort a list in this range then quick sorting 

technique will be more helpful than the other techniques. 
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