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ABSTRACT 

 
Robotics and Artificial Intelligence stand as two disciplines related to computer science. Robotics aims at building robots 

which autonomously perceive, (eventually) reason and act (e.g., communicate) in real physical environments. A.I. aims at 

representing knowledge and reasoning on it, in a way as close as possible to human reasoning. Without raising arbitrary 

barriers, these two disciplines are different: general conferences in the A.I. field include IJCAI, ECAI, AAAI, RFIA and 

many specialized conferences ; general conferences in the Robotics field include ICRA, IROS and many other specialized 

conferences, e.g., on control theory. 

       However, many Robotics-claimed work include A.I. algorithms: The A* algorithm and its variants are used for path 

planning, i.e., finding a continuous path from location A to location B on a map while avoiding obstacles recorded on the 

map; Evolutionary computing is used to optimize online merging of maps represented as occupancy grids, or in micro-

robotics; many examples can be drawn along similar lines.  

         In this paper, we sketch the main goals of A.I. and of Robotics, record their differences and highlight the convergence 

points, aiming at a better communication between the two communities. 

 

INTRODUCTION 
Artificial Intelligence and Robotics, as two main  domains related to Computer Science, both have a long history since their 

introduction, which can be traced back over the centuries for their initial ideas. However it still is difficult to define these 

domains, in order for each one to cover the vast variety of work performed under each banner. Let us attempt at using one 

definition of A.I.: is relevant to Artificial Intelligence any computer program which would be said “intelligent” if its activity 

would be so considered when performed by a human. Such a definition leads to the imitation game, or the Turing test, in 

which a tester has to determine to whom it communicates with through a  computer: a computer program or a human. 

          On the other hand, let us attempt at defining Robotics as  the design of mechanical devices known as robots, a word 

invented by a Czech writer in the early 20th   century. Given these two definitions, for A.I. on one side and for Robotics on 

the other side, there seems to be a wide gap between the two domains, except if we want to talk about intelligent robots, the 

notion of intelligence being added to the one of robot. 

        But the gap between the two domains is not so wide. For example, a widely adopted textbook on A.I. includes two 

chapters on robotics (written by Sebastian Thrun): chapter 24 “Perception” and 25 “Robotics”. The overall impression 

produced by this chapter organization is that robotics is a sub domain of A.I., i.e., a field on which A.I. can be applied. The 

result seems to be that robotics looks like an application domain of A.I. “Let’s give a body to our A.I. algorithms”.  On the 

other hand, an introductory book on robotics  considers A.I. as a software module giving intelligence to a robot. “Let’s plug 

a brain into that robot”.  

          In this paper, we argue that the point where the two communities seem to meet is the notion of intelligent robot, i.e., a 

robot on one side which would exhibit an intelligent behavior on the other side. More precisely, we advocate that this notion 

unfolds into the notion of software architecture of a robotic agent, i.e., the way the algorithms running on a robotic agent are 

organized, in order for the mechanical and electronic device to be able to face a real dynamic environment. 

 

 

FROM A.I. TO ROBOTICS, AND BACK 
In this section, we attempt at drawing how the A.I.  community perceives the robotics one on one side, and then how the 

robotics community perceives the A.I. one on the other side.  

A. Robotics considered from A.I. 

In the early 70s, Robotics and A.I. were not as separated as  now. For example, the robot SHAKEY from the SRI had its 

behavior driven by the first A.I. task planner, named STRIPS. This was the first time a robotic agent was able to exhibit 

a coherent behavior while actually computing first the sequence of actions it would take later. In other words, the 
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robot did not know at first what to do: It computed what to do (with the STRIPS task planner) before actually doing it 

(robotics part). One side effect of this project was the start of the A.I. planning community, resulting 40 years later in the 

ICAPS conferences series. 

     As another example, S. Koenig et al. propose an improvement of the A* algorithm, called lifelong planning A* , which is 

tested in the case of path planning robotic problem. This is another example of A.I. work resulting in 

robotic applications.  

 

B. A.I. considered from Robotics 

The main way A.I. is considered from the domain of  Robotics seems to be a library of algorithms. The most obvious A.I. 

algorithm imported into the robotics community seems to be A*, which can be used for path planning, i.e., finding a 

sequence of locations which leads a start location to a target location while avoiding known obstacles This 

model relies on discretizing the environment, considering some cells as successors (in the successor function of the A* 

algorithm) of the current cell and identifying the IsGoalReached? boolean function of A* as a successor cell 

being the goal location. (See the previous paragraph for improvements.)  

       Another algorithmic import from A.I. towards robotics is genetic algorithms. For example, Li and Nashashibi use 

genetic algorithms for map merging : given one map of some environment, how to find a rotation/translation of a second 

map which maximizes the number of pixels that match among the two maps? Considering this problem as an optimization 

problem would lead to a combinatorial explosion, and such a stochastic method can be applied successfully to merging maps 

coming from two different robotic vehicles. 

         Other algorithmic imports from A.I. towards robotics include fuzzy logic. For example, J. Perez et al. use fuzzy logic 

to define a small set of fuzzy rules determining the behavior of a driverless vehicle, i.e., for the control part of a robotic 

vehicle . Given the robotic software architecture of robotic driverless vehicle (see next section), the behaviour of a driverless 

vehicle can thus be defined by a small set of (fuzzy) rules. 

 

AGENT ARCHITECTURES 

A notion relating A.I. and Robotics seems to be the one of  robotic agent architecture, considered as the way to organize 

algorithms inside a robotic agent, which has to evolve in a physical real dynamic environment, thus constituting an 

intelligent robot.  

     A first robotic agent architecture is the Sense-Plan-Act loop in which the agent sequentially perceives its environment, 

builds an action plan through task planning, and executes it. The main problem with this architecture is that task planning is 

an NP complete problem, entailing that the task planning component might eventually take a very long time to produce a 

plan of tasks, for the agent to then execute it and eventually exhibit a motion. As a result, the overall agent might get stuck in 

the environment, while the environment might change and require attention --- in the worst case, the produced action plan 

might be obsolete once delivered because of environmental changes. 

           A radically different view is proposed by R. Brooks with the subsumption architecture In that  approach, the robotic 

agent is composed of a finite state  automaton, the parameters of which are set by an upper finite state automaton, the 

parameters of which … until the slowest (and upmost) finite state automaton is reached. This architecture incorporates no 

deliberation at all, since no symbol is allowed . The question then becomes: is such an agent intelligent? 

 

       As opposed to the subsumption architecture, and as an improvement of the Sense-Plan-Act architecture, Hayes-Roth et 

al. propose a 2-layer architecture of a robotic agent . In that architecture, there are 2 levels: one (lowest) for sensori-motor 

control loops (encoding “behaviors” in a “physical” layer), activating actual motion of the agent, and one (upmost) for 

recognizing a situation given perception, task planning, and plan monitoring (executing each action of the plan in sequence), 

in a symbolic “cognitive” layer. A major point is that these two levels run in parallel, therefore the agent can adopt a specific 

behavior even if A.I. task planning has not produced a task plan yet. Therefore, such a robotic agent is not stuck deliberating, 

as in the Sense-Plan-Act architecture, and still incorporated A.I. task planning, as opposed to the 

subsumption architecture. 

 

Another robotic agent architecture proposes the concept of deadline as first class notion, in a 3-layer architecture. In that 

approach, there again is a layer for deliberation (called deliberator) and a layer for physical behaviors (called controller). But 

in between lays another layer (called Sequencor) which activates components of the 2 previous layers, while allotting them a 

deadline to finish. As a result, the long computing of the deliberator can be avoided in a crude way. 

         In line with the previous 3-level architecture and retaining concepts of the previous 2-layer architecture is the LAA 

architecture . This approach is composed of a cognitive layer (called Deliberator), which includes an A.I. task planner 

(IxTeT) and a procedural executive to activated produced plans (PRS), and a lowest layer (called Executive), which includes 

the available sensori-motor control loops of the robotic agent. In between lays a functional level, which choses a sensori 

motor control loop given the specification of the action to undertake, produced by the deliberative layer. 

 

An improvement of the previous 2-level architecture, is the 2++ level architecture . This architecture is close in spirit to the 

2-level architecture of Hayes-Roth et al. , but includes an additional link between the Perception reactive component and the 

Action reactive component, for transmitting contingent plans in case of emergency. In case of emergency, a predefined 

contingent plan (“panic plan”) is adopted by the agent, while the cognitive level looks for a rational action plan to take the 

emergency event into account. Interesting behaviors of groups have been obtained for simulated aircraft in an adverse 

environment . 

 

          A final robotic agent architecture has been proposed for intelligent transportation systems, such as automated cars in 

daily traffic environments . This approach essentially s a Sense-Plan-Act architecture where task planning has been replaced 
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by path planning: the vehicle knows since the beginning its plan of action, but dynamically computes its future trajectory on  

a potentially crowded road, for later computing the detailed voltage to give to electrical effectors (e.g., engine). This 

architecture is sucessfully used for driverless automated vehicles such as CyberCars . 

 

 

DISCUSSION 
A main characteristics of robotic models is that they must  be capable of representing errors. For example, SLAM 

(Simultaneous Localization And Mapping) aims at both knowing where the robotic agent is on its map (localization) and 

building its map (mapping). Given its sensors, which mainly return a distance to potential obstacles (e.g., a laser), the 

problem is that if the agent knows where it is on its map, it can infer where the perceived obstacle is (by adding a vector to 

its own position); On the opposite, if the robotic agent knows where the obstacle is on its map, it can infer where it is on its 

own map (by subtracting a vector to the obstacle’s position). The problem of SLAM is that none of the two positions are 

known, therefore a SLAM algorithm accumulates measures in order to build an estimate of the two positions. Such a 

reasoning based on error shrink uses probabilities.  

            On the other hand, many A.I. techniques use discreteness: search algorithms, constraint programming, ontologies, to 

cite a few.  We believe that the main difference between Robotics and A.I. lay in the opposition between continuity 

(probabilities) and discreteness (integers). For example, the previous section shows examples of discretely encapsulating 

continuous algorithms: a continuous sensori-motor control loop (i.e., a behaviour of the physical layer of several of the 

previous architectures) is encapsulated into a discrete model (the architecture itself).  Similar opposition between continuous 

and discrete models may be found in other domains of computer science. For example, in Operational Research, the simplex 

algorithm (i.e., what is the value of real variables which minimize a linear cost function, given constraints on these variables 

represented as linear inequalities?) is based on continuous (real) values, i.e., the domain of a variable is the set of real 

numbers R. However when we want to obtain discrete values of variables for solving the same problem, variables then 

belong to the set of integers N, and no longer to the set of real numbers R. As a result, this same problem, but with the 

variables domain changed, becomes NP-complete, and one possible approach is the branch & bound algorithm, since the 

simplex algorithm alone does not guarantee that the values of the variables will be integers (discrete). The overall behaviour 

of the branch & bound algorithm, encapsulating calls to the (continuous) simplex algorithm at each node of the developed 

tree (relaxed solution), is closed in spirit to the notion of software architectures of a robotic agent (see previous section): both 

notions are discrete reasoning on continuous algorithms (sensori-motor loops controlled by task planning, for software 

architectures; simplex algorithm controlled by a tree search, for a branch & bound algorithm).  

             Now the next theoretical step lays in the opposition between the set of integers N (discreteness) and the set of real 

numbers R (continuity). N is included in R, and there is no bijection mapping N to R (R cannot be enumerated). But is that 

the end of the story?  

 

CONCLUSION 
In this paper, we discuss the relationship between  Robotics and Artificial Intelligence. Although more coupled 40 years ago, 

the two disciplines seem to have followed different paths, leading to two different communities with specific academic 

forums for each. A.I. seems to consider robotics as an application domain, and Robotics seems to import A.I. algorithms 

when needed, as in a library. We advocate that the goal of building an intelligent robot seems to unify the two domains. 

Towards this we present a brief survey of the notion of software architectures of robotic agents. Furthermore, we present 

arguments suggesting that the difference between the two domains might lay in the difference between discreteness and 

continuity, which fall on hard theoretical problems.   
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