

 JOURNAL OF COMPUTER SCIENCE AND ENGINEERING

 Dynamic Memory Allocation

 Saksham wason,piyush kumar ,shubham rathi

Dronacharya college of engineering
Farrukhnagar,Gurgaon,haryana

Abstract- Memory management is an important part of

modern computer system. Dynamic Memory Allocation

has plays very important role in Memory Management

and becomes fundamental part of today’s computer

system. It is classical problem in computer science by

paying some complexity. It is minimizing the cost of

memory by providing efficient use of it and it is art of

handling computer memory powerfully. Memory

Management is commonly one of the most critical parts

of Operating System, especially the main memory. In

this paper, we will describe the role of Dynamic

Memory allocation in Memory Management,

comparison with static memory allocation, and issues

with using DMA

I. INTRODUCTION

1 Now a days the Computer science industries is

undergoing significant changes because the

development of new technologies, moving towards

big data etc. Modern computer systems must adapts

to requirements, such as efficient memory

management, resource management, efficient

implementation process, virtual memory

management, efficient inter process communication,

good user interface etc. for operating system design

to continuous business process reengineering. To

determine these significant requirements for modern

operating system design, we need to concentrate to

these requirements.

*Corresponding author: Nilesh Vishwasrao Patil is

working as System Analyst and Prabhudev S

Irabashetti as Asst Prof

Application programs could not directly run on

hardware, it will require interface called Operating

Systems. Operating system is an interface between

hardware and application programs or end user. The

design of OS is not easy task; we have to care about

above mentioned criteria. It is mostly developed in

Assembly, C, and C++ programming languages. We

are going to address Memory Management parts of
operating system.
Memory Management is very complex part of

Operating system design because it’s related to

physical level. It is broadly divided into three parts:

Hardware Memory Management, Operating System

Memory Management, and Application level

Memory Management. Hardware level memory

management has included RAM and cache memory,

which are related with hardware devices those

actually stores data. Operating System Memory

Management is related with the memory

allocated for programs, the operating system can

provide computer will have more memory than it has

actually, and also program has the machine's

memory. These both memories are part of virtual

memory. Application level memory management

consists of two related tasks such as Application and

Recycling. It provides memory for program objects

and data structures. When the program has demand

for memory then memory manager allocate block of

memory and if any data which is no longer require

then recycled that block of memory. Application

memory manager is also works on CPU overhead,

Interactive pause time and Memory overhead. These

are three main memory management components, in

this paper we have discussed on Operating System

Memory Management.

II. MEMORY MANAGEMENT DESIGN
PROBLEM

In Modern days, social networking websites

increases, everything stored in computers, increasing

numbers of users etc. so there is huge demand for the

memory than memory its availability. The main

objective of memory management is use the available

memory as efficiently as possible. The Memory

management design problem as shown in following
fig. 1

IJRDO - Journal of Computer Science and Engineering ISSN: 2456-1843

Volume-1 | Issue-4 | April,2015 | Paper-18 99

In this we have to start using a large piece of

memory. We will receive the sequence of blocks for

the request of memory. A request can be completed

with a block of memory that is at least as large as the

size requested. After completing request then the

memory is in use for a while, and it is returned to

allocator. Queue is handling all the memory requests.

A limitation is that the memory allocation algorithm

should not use more memory space or more

processor time to run. There is no one best solution to

memory management design, there are some series of

solution. Each solution has some advantages and

disadvantages and we have to find out which is best

solution for us. But it is always very hard to find out

the best solution without implementing and testing to

selected solution

Fig. 1 Memory Allocation Problem

III. STATIC MEMORY MANAGEMENT

PROBLEM

Static memory allocation process is done at compile

time; we have to allocate all the memory which is

requiring to program, applications or variable in its

lifecycle at beginning of execution. Even we don’t

need most of the memory at particular instance of

program or variable still we could not use allocated

memory for other purpose.

As we know every day large amount of data is

generated termed as Big data, need not only stored

big data but also maintain replication of Big data for

fast accessing purpose and to avoid data loss because

of system crash or natural disaster like earthquake

etc. so that we have to use available memory in

efficient manner. Memory management issue is

comes because of inefficient way of allocating
memory and de-allocating memory.

For example we are declare static array to stored

integer data, when we declare array of 5000,

Required memory = 5000*2 = 10000 bytes on

windows (32 bit) and

Required memory = 5000*4 = 20000 on Linux or 64
bit windows.

10000 (on Windows) and 20000 (on Linux) has

reserved for above declared array and we could not

use that memory, even that array contains only one

integer or no data. Suppose if array has contains 5000

integers, we have deleted 4999 still we could not use

that memory for other purpose.

Above strategy is called static memory allocation.

Above problem with memory management is arises

because of static memory allocation or we can say, in

such situation static memory allocation fails to handle

memory management efficiently. Still static memory

allocation has few advantages over dynamic memory

allocation like allocating speed faster, mostly not

faced fragmentation problem, no extra algorithms

required to achieve allocation task. Even these

benefits with static memory allocation still mostly we

prefer dynamic allocation because need to use

available memory efficiently since data increases

very fast day by day.

I will illustrate difference between static and dynamic

memory allocation with example, and also see how

dynamic memory allocation strategy provide efficient

use of memory over static allocation strategy in next

part.

IV. DYNAMIC MEMORY
MANAGEMENT/ALLOCATION

Dynamic Memory Allocation is sometimes called as

Manual Memory Management. In DMA the memory

is allocated at run time. It is allocated whenever

program, application, data, variable demands with

required amount of bytes. We are going present,

manual memory allocation using ‘C’ programming

language because it will very easy to show allocation

and de-allocation. The programmer has direct access

to memory at run time to control over memory using

DMA. It is mostly explicit call to heap management

functions. ‘C’ programming language has supports

malloc(), calloc() and realloc() functions to allocate

memory for our program or applications. These

functions are called dynamic memory allocation

IJRDO - Journal of Computer Science and Engineering ISSN: 2456-1843

Volume-1 | Issue-4 | April,2015 | Paper-18 100

 JOURNAL OF COMPUTER SCIENCE AND ENGINEERING

functions; with the help of these functions we can

allocate required size of memory at run time. The

important mechanism about this strategy of

allocation, once utilized allocated memory, and that

memory is no longer requires for program,

application or variable which can be again available

to other purpose.

STATIC V/S DYNAMIC MEMORY
ALLOCATION

Memory management has merits and demerits of

using static memory and dynamic memory allocation.

We have to select best allocation strategy for our

business. To select best allocation strategy, need to

compare understand: first our business and second

merits and demerits of both related to our business.

To compare static and dynamic memory allocation,

we are going to take one simple example, so that we

could find out how dynamic memory allocation uses

memory efficiently than static memory allocation in

some situations. Suppose I have opened an

organization, so need to maintain information of

employee of organization. To implement employee

information management system (EIMS), we can

create EIMS in two ways, one using static memory

allocation and second using dynamic memory

allocation. Before implement EIMS, we have to think

growth of our organization after 10-15 years,

approximate how many employees will be on payroll.

Consider at the beginning of this organization only

10 employees and after 10 years organization may

have 10000 employee approximately.

To implement EIMS using static implementation, we

can use array. We will declare array of structure for

10000 employee, because once developed its very

difficult to change.

Second way is to implement EIMS using dynamic

implementation, no need to allocate memory for

10000 memories at beginning. Whenever we will add

new employee the memory is allocated at run time

and we will delete employee we can recycled that

memory after de-allocating if we don’t that

information in future.

Now we are going to address advantages of dynamic

allocation over static allocation. As per above

example from beginning of EIMS using statically, we

have to allocate memory for 10000 employee even

organization has 10 employee. The memory has

wastage means we could not use allocated memory.

While using dynamically implementation of EIMS,

the memory is allocated at run time whenever new

employees add the memory is allocated. This shows

dynamic allocation efficiently used memory than

static allocation. Second advantage is even we

deleted employee from the organization we could not

use memory for static EIMS while if we delete

employee record the memory will available for us to

use for other purpose for dynamic EIMS.

Fig. 2 Difference between static and

dynamic allocation

V. DYNAMIC MEMORY ALLOCATION
WORK

We have seen how dynamic allocation plays

important role in memory management. Now I am

going to present, how does dynamic memory

allocation works? We have used C programming

language for this.

Problem: I would like to dynamically allocate

memory for 10000 integers and after completing its

work, de-allocate memory for recycled it.

Solution: C Programing language has provided

stdlib.h header file, which contains functions

malloc(), calloc() and realloc() for allocation while

free() for de-allocation of memory.

The task is to allocate memory for 10000 integers; we

can do this in two ways statically or dynamically.

This is accomplished dynamically as follows:
Suppose variable name: data (integer type).

Dynamic allocation will require pointer variable

instead of normal variable, symbol * (asterisk) shows

pointer variable declaration.
int * data;

The above statement, declare ‘data’ as integer

pointer. We are going to use malloc() function, and

also use sizeof() function which will gives number of

IJRDO - Journal of Computer Science and Engineering ISSN: 2456-1843

Volume-1 | Issue-4 | April,2015 | Paper-18 101

 JOURNAL OF COMPUTER SCIENCE AND ENGINEERING

bytes require for integer data type. It will help

because size of integer is changes as per operating

system (Linux: 4 bytes and Windows: 2 bytes).
data = (int *) malloc (10000 * sizeof(int));

malloc() function returns void pointer, so need to

convert into our destination type means integer.

Above statement will allocate memory for 10000

integers and ‘data’ pointer will point to first block of

allocated memory.

Now, next task is de-allocation of memory. We will

use free() function to de-allocate memory. Following

statement will accomplish this task:
free(data);

It will de-allocate memory to reuse, but still ‘data’

pointer will points to that memory location. We can

called ‘data’ pointer is a dangling pointer because it

pointing to memory even it is de-allocated. Dangling

pointer is a pointer which is pointing to nothing. To

remove dangling pointer we use following statement:

data = NULL;

Above statement will remove dangling pointer that

means ‘data’ will point to null instead of any random

memory.

Above example shows how did efficiently handle
memory using dynamic allocation.

A dynamic memory allocation takes help of pointers

during allocating memory to hold the address of

allocated block. Array is decent entity; we could not

change its size in middle of execution of program.

- If Array = small then our program fails to handle
large amount of data at run time.

- If Array = big then lots of space has been wastage
means inefficient use of memory.

The best solution is to create a data structure

(language independent entity) which start from small

piece of memory and add new piece of memory

whenever require at time. Pointer is connection here

which holds these pieces.

VI. PROBLEM WITH DYNAMIC MEMORY
ALLOCATION

Everything has two ends like coin is head and tail.

DMA also has two ends; one end is advantages that

we have seen above. Now we are going to second end

are disadvantages of using DMA.
There are some problems with DMA as follows:

Memory leak

Memory leak is a condition in which some programs

or application which is continuously allocate memory

without ever giving it up and finally run out of

memory. It will affect data loss.
Dangling pointer

It is also called as premature free. After the use of

memory we have free memory using any de-

allocating memory function (free () in C-language)

but pointer will still points to that memory location.

Whenever programs or application giving up memory

and memory allocator attempt to access that latter it

will crash or behave randomly. To prevent dangling

pointer one more task we have to perform with de-

allocating memory is to assign NULL value to

pointing pointer.
De-allocating memory

The developer responsibility to de-allocate (free)

memory when it finish its work with it. In this two

condition commonly seen for example:

Suppose developer has de-allocate memory before he

finish it its work then future access to memory will

gives run-time error. Second is developer forgotten to

de-allocate some allocated space after its use.

To freeing a memory we should have to care, the

memory we are going to de-allocate, it’s never going

to use in future and also try to de-allocate all

allocated spaces which will never to be use.
Memory Fragmentation

It is very serious problem with dynamic memory

allocation because external fragmentation even we

could not use available memory in some situation

that we will discuss using following example. As we

know using dynamic allocation the memory may not

stores continuously, wherever available required size

of memory allocated there. Now we are going to see

the adverse effect of dynamic allocation on memory

management with the help of following example and

fig. 3.

Suppose we have following memory structure which

shown in fig. 3. There is 30 bytes free space

available. This 30 bytes of memory available in two

parts, first is 10 bytes and second one 20 bytes.

Remaining memory has allocated for other purpose.

And request is come to memory manager, to allocate

memory of 25 bytes but memory allocator could not

allocate memory even it has 30 bytes of free memory,

because of fragmentation
Time consuming

IJRDO - Journal of Computer Science and Engineering ISSN: 2456-1843

Volume-1 | Issue-4 | April,2015 | Paper-18 102

 JOURNAL OF COMPUTER SCIENCE AND ENGINEERING

Memory management with help of dynamic memory

allocation is time consuming process as compare to

static. Let us see, when malloc/calloc/realloc/new

(Programming language C, C++) then memory

allocator looks for free requested size of block, after

finding requested size of free block, mark that block

as reserved then assigned pointer to first memory

location. There are various algorithms perform this

task to achieve dynamic memory allocation.

Fig. 3 Memory allocation example

Above are some issues with memory management
when it uses dynamic memory allocation strategy.

VII. CONCLUSION

In this paper we have presented role of dynamic

memory allocation in memory management. In which

we have discussed memory management design

issue, and both ends of dynamic memory allocation

(advantages and disadvantages). We have also

compared static and dynamic allocation with the help

of employee management information system

(EIMS).

REFERENCES

[1] Dipti Diwase, Shraddha Shah, Tushar

Diwase, Priya Rathod. (2012). Survey
Report on Memory Allocation Strategies
for Real Time Operating System in
Context with Embedded Devices. IJERA

Internet Computing [Online]. 2(3), pp.
1151-1156. Available

[2] M. Masmano, I. Ripoll, A. Crispo
Dynamic Storage Allocation for real
time embedded systems Universidad
politecnica de Valencia, Spain.

[3] Manish Mehta, David J. DeWitt
Dynamic Memory Allocation for
Multiple-Query Workloads Computer

Science Department, University of

Wisconsin-Madison.
[4] Krishna M. Kavi, Merhan Rezaei, Ron

Cytron An Efficient Memory
Management Technique That Improves
Localities University of Alabama in
Huntsville and Washington University in
Saint Louis.

[5] Morris Chang, Woo Hyong Lee and
Yusuf Hasan Measuring Dynamic
Memory Invocations in Object-oriented
Programs Dept. of Computer Science,
Illinois Institute of Technology, Chicago
IL. 60616

Website links:

[1] http://webdocs.cs.ualberta.ca/~holte/T26

/dyn-mem-alloc.html
[2] http://www.memorymanagement.org/arti

cles/begin.html
[3] http://digital.ni.com/public.nsf/allkb/119

E4AA17E0A6F9C86256C4E00568121

[4] http://www.cprogramming.com/tutorial/

virtual_memory_and_heaps.html

[5] http://www.careerride.com/c-

static-memory-dynamic-memory-
allocation.aspx

IJRDO - Journal of Computer Science and Engineering ISSN: 2456-1843

Volume-1 | Issue-4 | April,2015 | Paper-18 103

