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Abstract

The global financial market is characterized by inherent and evolving uncertainty. Measuring this uncertainty plays a
crucial role in managing risk associated with financial derivatives. Various mathematical models, including robust risk
measures, model risk measures, and locally risk-minimizing strategies, have been employed to quantify this uncertainty.
This paper contributes to this ongoing research by proposing novel approaches to quantify uncertainty in financial
derivatives, specifically by leveraging entropy measures with stochastic probability density functions. Traditionally,
entropy models have relied on Gaussian probability density functions. This paper proposes an alternative approach using
stochastic probability density functions, to capture the inherent randomness of uncertainty in financial markets.
Furthermore, the use of this developed stochastic density function will achieve linear and sub-linear scaling without
relying on the sparsity of the density matrix nor on the design of the subsystem interaction in embedding schemes. We
demonstrate that this approach adheres to key entropy properties and can be extended to various entropy families.
Empirical results show that the proposed model using stochastic probabilities outperforms models using normal
probabilities, potentially representing a significant advancement in quantifying uncertainty with entropy measures.
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Introduction

In the ever-changing world of finance, where fortunes and losses are made under the shadow of uncertainty, entropy
emerges as a powerful tool for measuring the unknowable. In the context of financial derivatives, these complex
instruments designed to manage risk, ironically, carry their own inherent risk stemming from the unpredictable nature of
the underlying assets [1], [2]. Accurately gauging and accounting for this uncertainty is crucial for navigating the financial
tightrope with confidence, and entropy steps in as a reliable guide [3].

Why Measure Uncertainty in Derivatives?

Financial derivatives like options, futures, swaps, and forwards derive their value from the price of the underlying asset.
Acknowledging that predicting the future with perfect accuracy seems to be impossible, because a multitude of factors,
from geopolitical tensions to economic data releases, can send markets into unpredictable gyrations. This inherent
volatility translates into uncertainty about the ultimate payoff of a derivative contract [4], [5].

Measuring uncertainty allows market participants to:

Quantify risk: By understanding the potential range of outcomes associated with a derivative position, investors can make
informed decisions about hedging strategies and risk mitigation.

Price derivatives accurately: Accurately reflecting uncertainty in pricing models leads to fairer and more efficient
markets.

Improve portfolio management: Uncertainty measures can be used to optimize portfolio allocation and diversification,
ensuring a balance between risk and return.

Entropy to the Rescue: Measuring the uncertainty

So, how exactly does entropy help us grapple with the uncertainty in derivatives? Imagine entropy as a gauge on your

car’s dashboard. A low entropy reading, with the needle barely budging, indicates a smooth, predictable highway ahead.

Conversely, a high entropy reading, with the needle bouncing wildly, warns of a treacherous, obstacle-ridden road. In the

financial world, entropy acts as that needle, quantifying the” bumpiness” or unpredictability of the market landscape.

There are several methods that exist for measuring uncertainty in derivatives using entropy [6],[7], each with own

strengths and limitations, this study acknowledges a few below:

1. Volatility: This widely used metric measures the degree of price fluctuations in the underlying asset. Higher volatility
implies greater uncertainty about future prices.

2. Value at Risk (VaR): VaR estimates the maximum potential loss of a portfolio within a given confidence level over a
specific time horizon. It provides a quantifiable snapshot of the portfolio’s exposure to uncertainty.

3. Scenario analysis: This qualitative approach involves constructing various hypothetical scenarios representing
potential market outcomes and assessing their impact on derivative positions.

4. Monte Carlo simulations: This stochastic method simulates thousands of possible price paths for the underlying
asset, generating a probability distribution of potential payoffs for the derivative.

Uncertainty is an inescapable reality in the world of finance, and nowhere is its presence more keenly felt than in the realm
of derivatives. By employing effective methods for measuring and managing uncertainty using entropy, market
participants can navigate the ever-shifting landscape of financial markets with greater confidence and make informed
decisions that protect their capital and maximize their returns. Remember, while uncertainty may cast a long shadow, it is
by embracing its presence and developing strategies to mitigate its impact that we can truly unlock the potential of financial
derivatives as powerful tools for managing risk and achieving financial goals.

Concept of entropy model

Consider a stochastic process defined by a collection of random variables indexed by time. In a discrete time, a stochastic

process X = {X,,n = 1,2,3, ...} can be used to define the information entropy with the probability mass function
f(-) given by

H(X) = Z £(x) log £ (%),
, ’ (1)

and in a continuous time, stochastic process X = {X¢, 0 < t < 00} extend the information entropy to
HX) = [ f(x) logf (x)dx, 2)

where H(X) is the information entropy, f(X) is the probability distribution and log is a natural logarithm or a logarithm
to base 2 [1]. The information entropy what is commonly referred to as Shannon entropy by Schwill and Shannon (1948)
[8], whom stated ”Entropy is the measure of uncertainty in random variables”.

Many extensions of Shannon entropy have been introduced. Related to Shannon entropy is Relative entropy or
Kullback-Leibler divergence,
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HXIIY) = [og() log&2dx )

where f(X) and g(X) are probability density functions of probability measures X and Y respectively [9]. Other notable
entropy is Renyi and Tsallis entropy which is specified as

Ho(X) = rlylog Lf)Ydx @

where Y is the order of the entropy [10]. Many other entropy measures such as Sample, Mutual information, and transfer,
also exist.

Common properties of all these entropies are:
e The Applicability in both discrete and continuous cases.
e The range is from 0 to 1 unity. The measures are normalized to 0 in the case of independency, and the modulus
of the measure is 1 in the case of measurable exact relationship between the random variables.
e In the case of a bivariate normal distribution, the measure of dependence has a simple relationship with the
correlation coefficient.
e It measures not only the distance but also the divergence.

Literature Review

Entropy, a fundamental concept in information theory. It attempts to quantifies the inherent uncertainty associated with a
probability distribution. It does this by capturing both the randomness within the distribution and the information content
embedded in its higher-order moments [11],[1],[3]. While entropy has been used for uncertainty quantification, existing
literature often relies solely on the normal probability density function (NPDF) as a penalty term [12]. This approach,
while established, has limitations in capturing complex real-world uncertainties. Notably, it treats weights as discrete
normal probabilities and employs entropy as a penalty to push them towards an equally weighted distribution [13],
potentially overlooking valuable information embedded in other probability density functions [14]. Instead of the
traditional penalty term approach using the normal distribution, there is a leverage of entropy directly as a quantifier of
uncertainty in financial derivative markets. This aligns with information theory principles [15], capturing richer
information content beyond the limitations of the normal distribution. Given its capacity to quantify inherent randomness
and information content, Shannon entropy has garnered widespread recognition as a valuable measure in financial
derivative management [16], uncertainty quantification [11], and utility theory [17].

Shannon Entropy: A Pillar of Uncertainty Quantification

Shannon entropy, introduced by Claude Shannon in 1948 [8], has become a cornerstone of information theory and a widely
used tool in diverse academic disciplines. It quantifies the uncertainty associated with a random variable, essentially
measuring the average information needed to predict its outcome [18],[3]. Defined differently for continuous and discrete
cases [19], Shannon entropy captures the inherent randomness of systems ranging from thermodynamics to financial
markets [18]. However, it’s crucial to acknowledge Shannon entropy’s limitations. Its dependence on chosen parameters
and lack of an invariant measure can lead to inconsistencies [20]. Notably, Kullback-Leibler divergence [21] highlights
this shortcoming, demonstrating that Shannon entropy is not inherently symmetric in comparing two probability
distributions [9]. Despite these limitations, Shannon entropy remains a valuable tool due to its simplicity and
interpretability. Furthermore, several alternative measures address its shortcomings. Renyi entropy [9], a generalization
with parameter ’y’, offers additional flexibility. When ’y’ approaches 1, it converges to Shannon entropy. Tsallis entropy
[10], on the other hand, yields power-law distributions, making it suitable for situations where traditional exponential
distributions fall short. Moreover, the Maasoumi-Racine [22] measure presents a valuable alternative, particularly for time
series analysis [23]. Applicable to both discrete and continuous data, it ranges from 0 to 1 and excels at capturing non-
linear dependencies between random variables [24],[25], something Shannon entropy cannot directly address.
Nevertheless, while Shannon entropy has limitations, its simplicity and interpretability make it a foundational tool in
diverse academic fields [26]. The development of alternative measures like Renyi [9], Tsallis [10], and Maasoumi-Racine
[22], enriches the toolbox for quantifying uncertainty, allowing researchers to choose the most appropriate measure for
their specific needs and data characteristics [27]. These measures continue to push the boundaries of uncertainty
quantification, leading to deeper insights across various academic disciplines.

Kullback-Leibler Divergence: Unveiling Uncertainty through Informational Disparity

While not explicitly measuring uncertainty, Kullback-Leibler [28] (KL) divergence offers a critical lens into quantifying
this elusive concept within diverse academic disciplines. Its ability to assess the informational disparity between a
presumed distribution (X) and the true underlying one (Y) unlocks valuable insights into uncertainty [9]. KL divergence
as an Informational Gap [29]: at its core, KL divergence, denoted by KL (X]|Y), quantifies the additional information (in
bits) required to encode samples from the true distribution X using the code designed for our assumed distribution Y. This”
extra information” acts as a proxy for the degree of uncertainty associated with relying on Y to represent X [30].
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Unveiling Uncertainty through Model Evaluation:

Machine Learning: In model training, minimizing KL divergence between predicted and true data distributions becomes
a key objective. This ensures the model captures the underlying data accurately, effectively reducing prediction uncertainty
[31].

Hypothesis Testing: Comparing statistical models involves minimizing KL divergence between their predicted and
observed distributions. This identifies the model that best represents the observed data, aiding in uncertainty reduction
within the chosen model framework [32].

Beyond Traditional Metrics:

Unlike typical error metrics focused on point estimates, KL divergence tackles the entire distribution [33]. It captures not
only the average prediction error but also the spread and shape of the error distribution, providing a richer understanding
of uncertainty [34],[31].

Academic Nuances and Considerations:

Non-negativity: KL divergence is always non-negative, indicating how much” worse” Y is than X, not how” good” X is
on its own. This necessitates complementary metrics for absolute uncertainty assessment [35],[36].

Computational Cost: Calculating KL divergence can be computationally expensive for complex distributions, demanding
trade-offs between accuracy and efficiency [37].

Interpretability: While conceptually powerful, interpreting KL divergence in specific contexts requires domain
knowledge and additional analysis to extract meaningful insights [38].

In conclusion, KL divergence, despite not directly measuring uncertainty, offers a unique perspective by quantifying the
informational disparity induced by our assumption. By minimizing this disparity, we effectively reduce uncertainty,
making KL divergence a valuable tool for model evaluation, hypothesis testing, and various uncertainty informed decision-
making processes across diverse academic domains [39],[40].

Renyi and Tsallis Entropy: Bridging the Gaps in Uncertainty Quantification

While Shannon entropy serves as a foundational tool for quantifying uncertainty, its limitations [20], particularly its
dependence on chosen parameters and lack of an invariant measure, necessitate exploring alternative measures. Renyi and
Tsallis entropy [41],[9],[10] provide valuable solutions, offering greater flexibility and adaptability in diverse academic
disciplines.

Renyi Entropy. Unveiling Hidden Aspects of Uncertainty:

Proposed by Alfred Renyi [42], Renyi entropy (H,(X)) presents a generalization of Shannon entropy by introducing the
parameter ’g’. This parameter grants flexibility, enabling the capture of different facets of uncertainty depending on its
value [1]. As g’ approaches 1, Renyi entropy converges to Shannon entropy, maintaining compatibility with existing
applications [43].

Beyond Traditional Applications:

Renyi entropy transcends Shannon’s limitations, finding applications in diverse fields like information theory, statistical
mechanics, and complex systems analysis [44]. Its strength lies in capturing power-law distributions and heavy-tailed
behaviour, effectively handling non-uniform information content where Shannon entropy struggles [45]. The tenable
parameter ’q’ empowers researchers to focus on specific aspects of uncertainty, tailoring the measure to their data and
research questions.

Tsallis Entropy: Embracing Correlations and Complexity:

Introduced by Constantino Tsallis in 1988 [46], Tsallis entropy (H,(X)) incorporates an additional parameter g’ to account
for potential correlations between system elements. This makes it particularly suitable for systems with long-range
correlations or non-extensive interactions, where conventional entropy measures fall short [47]. Tsallis entropy generates
power-law distributions, offering valuable insights into complex systems exhibiting self-similar or fractal behaviour [48].

Academic Nuances and Rigor:

Both Renyi and Tsallis entropy necessitate careful parameter selection. Inappropriate choices can lead to
misinterpretations and inconsistencies in uncertainty quantification [49]. A thorough understanding of their theoretical
underpinnings and limitations is crucial before application in specific academic contexts. Comparative analysis with
Shannon entropy is essential, along with clear justifications for chosen parameters, to enrich research methodologies and
deepen the understanding of uncertainty within specific disciplines [50].

Renyi and Tsallis entropy represent crucial advancements in quantifying uncertainty, offering researchers wider
applicability and adaptability beyond the conventional limitations of Shannon entropy [51]. By delving into their
theoretical foundations, understanding their applications, and acknowledging their limitations, researchers can leverage
these powerful tools to gain deeper insights into complex systems and phenomena characterized by non-uniform
information content, intricate correlations, and multifaceted interactions [48],[50].
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Maasoumi-Racine Entropy: A Rigorous Exploration Beyond Shannon Entropy

Within the realm of information theory, Shannon entropy reigns supreme as the foundational measure of uncertainty
associated with random variables [52]. However, its scope is limited to individual variables, neglecting the crucial realm
of dependence between them [20]. To address this shortcoming, Maasoumi-Racine (MR) entropy [25] emerges as a more
versatile and academically rigorous extension, offering a deeper understanding of information content in complex systems.

Fundamental Principles:

Joint Uncertainty: Unlike Shannon’s focus on individual probabilities, MR entropy explicitly incorporates pairwise and
higher-order dependencies, enabling the analysis of intricate interactions within datasets. This makes it immensely
valuable for tackling problems where variables exhibit non-trivial relationships

[53].

Generalized Dependence Structures: MR entropy transcends limitations of traditional measures by accommodating a
wider spectrum of dependence structures [54]. It seamlessly handles linear, nonlinear, and even nonparametric
dependencies [55], providing a more general framework for diverse data and applications.

Enhanced Information Capture: By delving into the realm of dependence, MR entropy offers richer information
compared to Shannon entropy [22]. It unveils crucial insights into how variables intertwine, empowering researchers with
a deeper understanding of system dynamics and facilitating improved modeling and prediction capabilities [56].

Academic Insights and Rigor:

Renowned scholars commend MR entropy for its flexibility [52], generality, and information richness, highlighting its
advantages in various academic disciplines [56]. Theoretical, MR entropy is firmly grounded in information theory
principles, drawing upon well-established axioms and mathematical frameworks [22]. This ensures theoretical soundness
and rigor. Extensive research showcases the practical utility of MR entropy in diverse academic fields, including finance,
econometrics, machine learning, signal processing, image analysis, bioinformatics, and social network analysis [56],[22].
While offering enhanced information, MR entropy can involve higher computational costs compared to Shannon entropy.
However, ongoing research explores efficient algorithms and approximations to mitigate this challenge [57].
Mathematically sound, MR entropy measures can sometimes lack intuitive interpretations [22]. Recent efforts focus on
developing more interpretable formulations that bridge the gap between theory and practical application.

Moreover, MR entropy stands as a powerful extension to Shannon entropy, offering a rigorous and flexible framework for
information analysis in complex systems [52]. Its ability to capture dependence structures and provide richer information
content makes it a valuable tool for academics across various disciplines [52]. By addressing computational and
interpretability considerations, MR entropy is poised to play an increasingly critical role in advancing our understanding
of information and dependence in diverse academic pursuits [22].

Methodology

Stochastic Probability Density Function Theory
Introduction
Stochastic (Non-deterministic) probability density function theory (SPDF) encompasses a rich and diverse set of methods
used to describe and analyse systems governed by random processes. Understanding these systems often requires going
beyond traditional deterministic approaches and embracing the inherent randomness present. SPDF theory provides a
powerful framework for doing just that.

e  Stochastic Processes: Systems often evolve in a random way over time. SPDF theory models such systems using
stochastic processes, which describe the evolution of the system’s probability distribution over time. These
processes can be discrete (e.g., coin flips) or continuous (e.g., Brownian motion).

e  Probability Densities: SPDF relies heavily on the concept of probability density functions (PDFs). A PDF assigns
probabilities to different possible values of a random variable, allowing us to quantify the likelihood of each
outcome.

e  Equation-Based Analysis: Instead of deterministic equations, SPDF theory utilizes equations that involve
probabilities and random fluctuations. These equations, such as the Fokker-Planck equation, describe how the
probability distribution of the system evolves over time.

Stochastic Process
Stochastic processes describe dynamical systems whose time-evolution is of probabilistic nature.

Definition 1. Let T be an ordered set, (), F,P) a probability space and (E,G) a measurable space. A stochastic
process is a collection of random variables X = {X; t € T} where, for each fixed t € T , Xy is a random variable from
(Q,F,P) to((E,G). Qis known as the sample space, where E is the state space of the stochastic process Xt
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[58].

The set T can be either discrete, for example the set of positive integers Z T, or continuous T = R*. The state space £
will usually be RY equipped with the 0-algebra of Borel sets. A stochastic process X may be viewed as a function of both
t € Tand w € Q. The notations are sometimes used, X(t), X(t, @) or X;(w) instead of X{. For a fixed sample point
W € Q, the function X (w): T +— & is called the path of the process X.

One of the most important continuous-time stochastic process is Brownian motion. Brownian motion is a process with
almost surely continuous paths and independent Gaussian increments. A process X; has independent increments if for
every sequence ty < t; < -+ < t, the random variables

th - XtO’ th - th, e ,th - th—l
are independent. If, furthermore, for t1,t,, S € T and Borel set B C R.
P(Xt,+s — Xt,+s € B) = P(X;, — X, € B)
[59], then the process X; has stationary independent increments.

Definition 2. 4 one-dimensional standard Brownian motion W (t): R* v R is a real valued stochastic process with
almost surely continuous paths such that W(0) = 0, it has independent increments and for everyt > s =0, the

increment W(t) — W(S) has a Gaussian distribution with mean 0 and variance t — S, i.e. the density of the random
variable W (t) — W (s) is

g(x;ts) = (m(t—s)) 2 exp( T S)) [53]
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Figure 1: A path of a “sticky” Brownian motion (blue) constructed from the path of a reflecting Brownian motion
(grey). The local time at 0 of the “sticky” paths is in red [60]

A standard d-dimensional standard Brownian motion W (t): R* +— Risavector of d independent one-dimensional
Brownian motions:

W) = (Wi (D), ..., Wa(D),

where W;(t),i = 1, ..., d are independent one-dimensional Brownian motions. The density of the Gaussian random

vector W (t) — W (s) is thus
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2
I

d
g(x;t,s) = (n(t — s))_7 exp 20—9)

Acknowledging that Brownian motion with almost surely continuous paths, also has a continuous modification. Consider
two stochastic processes X;, and Yy, t € T, that are defined on the same probability space (Q, F, P). The process Y, is

said to be a modification of X;, if P(X; = Y;) = 1 for allt € T. The fact that there is a continuous modification of
Brownian motion follows from the following result known as Kolmogorov theorem, see Figure 2.

Theorem 1. Let X; ,t € [0,0) be a stochastic process on a probability space (Q, F, P). Suppose that there are
positive constants & and B, and for each T = 0 there is a constant C(T) such that

ElX, — Xs|* < C(D|t—s|"*B,0<s,t<T. (5
Then there exists a continuous modification and Yy of the process of X4,

Brownian motion is also referred to as the Wiener process. It is possible to prove the existence of the Wiener process
(Brownian motion) as shown in the theorem below:

Theorem 2. There exists an almost surely continuous process Wy with independent increments such and Wy = 0, such

that for each t = 0 the random variable Wy is N (0, t). Furthermore, Wy is almost surely locally Hélder continuous
1
with exponent & for any O € (0, E)

Proof: let X1, X, , ... be iid random variables on a probability space ({2, F, P). with mean 0 and variance 1. Define the
discrete time stochastic process S with Sg = 0, Sy = ¥j=1 Xj,n = 1. Define now a continuous time stochastic
process with continuous paths as the linearly interpolated, appropriately rescaled random walk:

1 1
W' = 7Sty + (nt + [nt])\/_ﬁx[nt]+1 (6)

where [] denotes the integer part of a number. Then W{" converges weakly, as N +—> =400 to a one-dimensional standard
Brownian motion, see Figure 2.

1000-st2 sandom wak

1 L L 1
N W W & WM O WM O W™ x

a. n=>50 b. n = 1000

Figure 2: Sample paths of the random walk of length » = 50 and n = 1000.
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Furthermore, the definition of the one-dimensional standard Brownian motion is that of a Gaussian stochastic process on
a probability space (2, F, P) with continuous paths for almost all @ € (), and finite dimensional distributions with zero

mean and covariance E (Wti, Wtj) = min(ti, t]-).

For the d-dimensional Brownian motion we have [60],
E(W) =0,vt=>0 (7)
and
E((We = W) @ (We = W) = (t=5),  (8)
Where [ represent the identity matrix. And hence
E(W; ® W) = min(t,s)I 9)

The probability density of the one-dimensional Brownian motion is
_ 1 _—xZ%/2t
f(x,t) = N (10)
We can easily calculate all moments:

0 —x2/2

E(WD) = \/%f_*m a an
_ (1.3.. (n—1)t"{n/2}, n "{even} 5
B 0, n"{odd}"’ 59

One can see that the mean square displacement of Brownian motion grows linearly in time and Brownian motion is
invariant under various transformations in time.

Proposition 1. Let W, denote a standard Brownian motion in R. Then, Wy has the following properties:

(1) (Rescaling). For each k > 0 define X, = \/LEWCF Then (X_t$,$t = 0) = (W_t$,$t > 0) in law.

(2)  (Shifting). For each ¢ > 0, W — W, t = 0 is a Brownian motion which is independent of Wy, a € [0, a].
(3) (Time reversal). Define Xy = Wy_ — Wy, t € [0,1]. Then (X, t € [0,1]) = (W, t € [0,1]) in law.
(4)  (Inversion). Let Xy, t = 0 defined by Xo = 0, X¢ = tWq y). Then Xut=0) = (W, t = 0)inlaw

Proof

(1) Consider t be a specific time point, where it can be rewrite as t = ¢S for some S = 0. Using change of variable
formula, we have

1 1 1
X = ﬁwct = ﬁwcs(l) = \/_F\/EWS
\_

Since W is normal distributed with mean 0 and variance S, then W/ /¢ is also normal distributed with mean 0 and
1 1
variance S/C. If we multiply through with 77 wegets /ks =t/k. So X; = N W+ is normal distributed with

mean 0 and variance t/K. Since X; matches the distribution of W for any t = 0, then we conclude that (X; =
W, . forany t = 0) in law.

(2) LetS =inf{t > 0 : W, = c}. Sis stopping time, and W, = Wj. Therefore, the sigma-algebra generator
by {W,:0 < a < S} ={W,:0 <a < S} is independent of the sigma-algebra generated by {W¢ it =
0} = {{Ws:S < s < S+ t}. Since Wyt — W = (Weyr — Wg) + (Wg — W,), we can see that:
e W, — Ws is independent of {W,: 0 < a < S} due to the strong Markov Property.
o Ws — Ws isindependent of {IW,: 0 < a < S} because W, is a function of {WW,: 0 < a < S}.
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Therefore W, — Wy is a sum of independent random variables and hence independent of {I/,: 0 < a < S}. By
stationary of increments, it is also independent of any W, for a € [0, c]. Since W, — W, has same distribution as
W, — W,, for any ¢ = 0 and, also independent of any W, for a € [0, c], then W, — W, is a Brownian motion
independent of W, fora € [0, c].

(3) (Time reversal). Having Xy = W;_; — Wj, apply the reflection principal witha = 1 andt = 1 — tto get:

X = W(l—t)—l -W; = Wt/2 -W
1
This means Xy is the reflection of a Brownian motion at 0 across the line t = > To show that the distribution of X,

matches the distribution of W; for t € [0,1] we take note of the following:
e Both W; and the reflection of a Brownian motion start at 0 (since Wy = 0 ).
e Both have same variance for any given .
e  The reflection simply changes the direction of the movement but preserves the magnitude.

Since the distribution X; matches the distribution of W; for any t € [0,1], we conclude that X; = W; for any
t € [0,1] in law.

) 1 1 ds . .o A
(4) Define a transformation S = T Thent = 3 and dX; = P Using transformation in the 1té formula on X,

1 2
dXt = tdWl/t + Et d(Wl/t)t

substituting ds and simplifying

dX; = dW+1t2d
t — S ZS S

The standard Brownian motion W; satisfies the stochastic differential equation (SDE)
th = dBt

where B; is a standard Brownian motion with variance z. Comparing the two (SDE):
e both have the same drift term (0).

. 1.
e the diffusion term for X; volves ; instead of' S compared to W, .

Although the diffusion terms differ, they are related by a simple transformation:
1
o for t>1, S <s

. f0r0<t<1,§<s

Therefore, the diffusion term of X; scales the diffusion term of W in a predictable way depending on the time range.
This scaling does not affect the distribution of the process if the scaling factor is non-random and deterministic. Since

both X; and W; satisfy SDEs with the same drift term and equivalent diffusion terms they have the same distribution.
Therefore, (X; = Wy for any t = 0) in law.

One can also add a drift and change the diffusion coefficient of the Brownian motion: Let’s define a Brownian motion
with drift [l and variance O 2 as the process

X¢ = put + oW, (12)
The mean and variance of X are

E(X) = ut, EXp — E(Xp)? = ot. (13)
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Equation (12) above satisfies the equation

dX; = pdt + odW,. (14)
Which is a stochastic differential equation. Now in the probability density equation (10), we insert the drift { and the

variance 02 as controller of a stochastic behaviours. Hence the stochastic probability density function or a Gaussian
Random Field distribution can be express as in [61]

f(x,t) = 15)

1 _ [logx;—ul?
V2mo? €Xp ( 202 )

Quantifying uncertainty

Here we lay the groundwork for a robust discussion on quantifying uncertainty within diverse mathematical frameworks.
Let’s delve deeper into the mathematical aspects:

e Let U denote the set of all uncertainty measures offered by various theories (e.g., probability theory, possibility

theory, Dempster-Shafer theory [62]).
e Each theory operates on a space of evidence representations, denoted by C. This space typically comprises subsets

of the universal set of possibilities X.
e The crucial aspect is to assign a function u as a representation in the theory (t, defined as follows:

(16)
wU(p) — RY,
where

u:C— R 17)

associating a non-negative real value (uncertainty magnitude) with every uncertainty measure | € U [63]. This function
translates theoretical uncertainty representations into quantifiable values.

The mapping function u# must adhere to specific axioms ensuring consistency and meaningful interpretation of assigned
uncertainty values. Some essential axioms could include:

u(p) = O forallu € U.
2. u(pg) = O for a specific reference measure uorepresenting perfect certainty (e.g., measure concentrated on a single
outcome).
Higher uncertainty (less evidence) should have a higher numerical value: P, < p, = u(py;) = u(u,)

4.  Compatibility with fundamental operations on measures (e.g., union, intersection) might be desirable depending on
the application.

w

The fundamental measure of uncertainty based on Hartley’s measure quantifies [64] H(p) = — log, (A]), where 4

represents the set of possibilities consistent with the evidence L. The higher cardinality (|A|) implies more ambiguity
and results in a higher uncertainty value. This measure solely considers the number of possibilities, ignoring potential
information within i about their relative likelihoods. In the context of possibility theory, the finite set X of conceived
alternatives includes only one alternative in each situation that is true. This uncertainty measure can be interpreted as a
measure of diagnostic uncertainty. The level of uncertainty increases as the number of alternatives increases [63]. We now
investigate the Shannon entropy.

The Shannon Entropy with stochastic probability

The standard Shannon entropy H(X) defined in equation (2) uses a uniform probability distribution, assuming all possible
outcomes are equally likely. This works well for simple scenarios with no inherent bias, but it might not reflect the true
uncertainty in many real-world situations. This study considers that stochastic or non-deterministic probability
distributions, can incorporate specific information about the variability and skewness present in the data.

Let M (x) be the newly modified Shannon entropy measure, with all the attributes of uncertainty quantifier defined by
equation (16), so
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M(X) = —ff(x,t) log, f(x, t)dx (18)

R

in case where X is a continuous random variable, or
M(X) = — XL, f(x,t) log, f (x,t) (19)
when X is a discrete random variable and f(X, t) is the stochastic probability density function given in equation (15).
M (x) leads to:

e More accurate entropy values: Reflecting the actual uncertainty characteristics of your system.

e Deeper insights: Revealing how uncertainty changes over time, depends on external factors, or exhibits specific
patterns.

o  Tailored analysis: Matching the distribution to your specific problem domain and research questions.

Theorem 3. For any valid PDF f(x,t) = 0, H(f) = fR f(x,t) log, f(x,t)dx = 0

Proof

By PDF definition, f(x,t) >0 for all x = 0. Which results to f(x,t)-[—log _2(f(x,t)] >0.
Subsequently, it follows that H(f) > 0. The product f(x,t)log, f(x,t) =0 if and only if f(x,t) = 1.
Therefore H(f) = fR f(x,t) log, f(x,t)dx = 0 if f(x,t) = 1 everywhere. Putting all together, we have

H() =>0.

Theorem 4. (Sub-additivity Property)
Let f(X, t) be a proper PDF i.e.,fR f(x, )dt = 1 suppose H(f) < 0 is finite and f(x,t) + g(x,t) = 1
where f and g are proper PDF. Then H(f + g) < H(f) + H(g).

Proof
We can utilize Jensen’s inequality, which states that, for a convex function U(X) with the probability distribution p (x, 1),
we have fR u(E[x]p(x,t)dx < E[u(x)]. Consider the convex function u(x) = xlog, X for all x = 0 and

p(x,t) = f(x,t) + g(X, t). Then,
f (f(x, t) + g(x,t) log, (f(x, t) + g(x, t)))dx < (f(x, t) + g(x, t)) + g(x, )E(1)dx
R

note that, E[1] = fR f(x,t) + g(x,t)dx = 1 due to the given condition. Rearranging and using the definition H(f)
and H(g),then H(f + g) < f(x,t) + g(x,t) = H(f) + H(g). Therefore, H(f + g) < H(f) + H(g) holds.

Theorem 5. (Maximum Entropy Principle)
Let E[h(X)] be the expected value of a function h(X) with respect to the random variable X and let C be a set of

constraints on these expected values. Then, the PDF (X, t) that maximizes H(f) subject to constraints in C is the solution
to:

ArgMax; { H(f) | E[h(X)] € C}(20)

Theorem 6. (Data Processing Inequality)
LetY = g(X) be a deterministic function of X with PDF f(x, t) . Then:

H(Y) < HX) e2y)

Theorem 7. (Chain Rule)
If X and Y are independent random variables with PDFs f (x,t) and g(y, t):

H(X,Y) = H(X) + H(Y) (22)
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Proof
Let X and Y be two random variables with joint PDF f (x, t) defined as

HKY) = — fR fR (x,y) logs £ (x, y)d xdy.

Since X and Y are independent, their PDF can be express as f(X, y) = f(x, y) . g(y, t) where f (x,t) and
g(y, t)are marginal PDF of X and Y respectively. Using product rule into joint entropy, we have

H(Xr Y) = - fR fR(f(X’ t) ' g(y’ t)) logZ (f(X’ t) ' g(Y: t)) dXdy (23)

Separating equation (23) using the logarithmic properties, we get
HOOY) = = [ 17660+ log, £Gx 0] + 05,0 - log, 801, + 83,9 - log £ (0] dcy
RYR

Therefore, grouping the terms based on the functions f (x,t) and g (y, t)

HX,Y) = — < j f(x,t) log, f(x, t) dX> + <— j gy, t)log, g(y, 1) dy) = H(X) + H(Y)
R R

Hence proven.

Results and Discussion

Introduction

This section details the application of the proposed entropy measure to analyse data from various financial instruments,
including stocks, futures contracts, and exchange rates. Data was retrieved from a publicly available financial database
[65] and subsequently analysed using Python as the primary programming language. Specific details regarding the chosen
instruments are provided in Table 1. The data encompasses a nine-year timeframe, spanning from December 2014 to
December 2023. Adjusted closing prices were utilized, with an average of up to 2265 observations per instrument. This
selection was based on data availability within the chosen database. To ensure consistency in the analysis, all instruments
were examined over the identical time-period, specifically, the first month, first year, third year, fifth year, seventh year,
and ninth year. Notably, the proposed quantifier is applicable to both discrete and continuous data series. Furthermore, the
study compared the traditional Shannon entropy, which utilizes a normal probability distribution, with a modified version
employing a stochastic probability distribution.

Periods One One Year | Three Five Seven Nine Years
Month Years years Years
Counts 21 252 756 1258 1763 2265
Bitcoins | 251.8562 | 271.9979 | 1606.9022 | 3951.6407 | 11189.1130 | 15041.2365
Facebook 76.7020 88.5732 | 120.5631 | 142.8207 | 181.3183 190.0512
Mean (1) SP500 | 2029.6414 | 2061.1271 | 2201.0824 | 2451.7115| 2821.1732 | 3125.0128
Rusell2000 | 1181.6657 | 1205.8931 | 1266.6228 | 1386.9670| 1528.6443 | 1602.5650
Tesla 13.6112 15.3316 16.7503 17.9175 63.6369 102.8474
Amazon 15.1555 23.8344 35.7203 55.6913 82.8309 91.9168
Bitcoins 38.4433 59.0922 | 2875.2343 | 3970.3189| 15898.3456| 16257.2142
Facebook 1.1113 10.1734 30.5622 38.0501 75.1616 76.3271
]S)t:V“ig;‘iz‘:l SP500 | 224612 | 54.8753 | 197.9467 | 356.9490 | 732.7045 | 871.4692
(@ Rusell2000 | 13.5689 | 47.9205 | 133.3196 | 187.2190 | 345.9905 | 339.7825
Tesla 0.5592 1.5845 3.6168 3.7331 89.3987 110.9273
Amazon 0.7128 5.5269 11.2922 26.6005 50.3666 48.6703
Table 1: Financial derivatives and their descriptions per period
Volume-10 | Issue-1 | Jan, 2024 18
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Testing for novel Shannon entropy

Prior to analysis, all data pertaining to the financial instruments outlined in Table 1 underwent a rigorous cleaning process.
This process ensured the removal of any inconsistencies or errors within the data. Subsequently, histograms and normal
probability density functions (PDFs) were generated to visualize the distribution of the cleaned data. These visualizations
are presented in Figures 5 and 6, respectively. Figure 6 depicts the histograms of the organized data. By visually inspecting
these histograms, a tendency towards normality can be observed in the data distribution. Conversely, Figure 6 employs
kernel density estimation (KDE) to capture the inherent randomness within the data. This technique provides a smoother
representation of the underlying distribution compared to histograms.
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Probability Density

0.0007

0.0006

0.0005

0.0004

0.0003

Probability Density

0.0002

00001

= Histogram
—— Normal POF

0 20000 40000 60000
Values

Histogram and PDF for SP500

Probability Density

0.0000

= Histogram
~—— Normal PDF

Probability Density
°
g
g
8
8

2000
Values

Histogram and PDF for Tesla

0.007

0.006

0.005.

0,004

0.003

Probability Density

0.002

0.001

0.000

0.008

0.007

0.006

0.005

0.004

0.003

0.002

0.001

0.000

0.0016

00014

0.0012

00010

0.0006

0.0004

0.0002

0.0000

= Histogram
—— Normal POF

Values

Histogram and PDF for Russell2000

W Histogram
—— Normal PDF

1500
Values

Histogram and PDF for Amazon

0010

0.008

0.006

0.004

Probability Density

0.002

0.000

Values

Figure 5: Histograms and normal PFD of financial derivatives
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KDE of Adjusted Closing Prices (Subplots)
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Figure 6: PDF of the Random Distribution using KDE function

Results

This section details the evaluation of information entropy for the adjusted closing prices of the aforementioned financial
instruments. The proposed entropy measure, as presented in Equation ([19]), was employed for this analysis. Additionally,
traditional Shannon entropy, based on Equation ([1]), was calculated for comparative purposes. The results of this
evaluation are summarized in Table 2.

Periods One One Year | Three Years | Five Years | Seven Years | Nine Years
Month
Bitcoins 4.3923 7.9773 9.5596 10.2937 10.7815 11.1435
Facebook 4.2018 7.8820 9.4723 10.1838 10.6940 11.0459
Shannon SP500 4.3923 7.9535 9.5411 10.2794 10.7713 11.1347
Entropy | Russell200 4.3923 7.9455 9.5384 10.2747 10.7634 11.1250
Tesla 4.3923 7.9187 9.5030 10.2343 10.7380 11.1052
Amazon 4.3923 7.9614 9.5490 10.2762 10.7657 11.1114
Bitcoins 4.16E-07 | 0.005698 1.549536 0.858404 0.306457 0.254947
Facebook 0 1.9E-12 0.16549 0.23663 3918133 3.284718
Proposed SP500 0 0 0 2.46E-09 0.007357 0.015511
Entropy | Russell200 0 0 0 1.14E-10 0.001731 0.000492
Tesla 0 1.7E-10 0.916559 0.479705 28.94218 21.00299
Amazon 0 0.91687 6.492424 19.81093 20.46706 15.04915

Table 2: Entropies outcome results
Discussions
The entropy risk measure results presented in Table 2 suggest a potential advantage over traditional Shannon entropy for
certain assets. While traditional entropy might indicate relatively high risk across all considered instruments (Equation
[1]), the proposed entropy measure offers a potentially different perspective (Equation [19]).

Table 3 provides further insights. It suggests that all assets might offer a relatively safe environment for short-term
investments, with Bitcoin appearing slightly riskier than the remaining derivatives. Conversely, SP500 and Russell2000
emerge as the most favourable options within this timeframe. For long-term investments, however, the study indicates that
Tesla, Amazon, and Facebook might be less suitable based on the proposed entropy measure
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One Month One Year | Three Years Five Years Seven Years Nine Years

Periods

SP500 SP500 SP500 Amazon Amazon
Entropy Russell200 Russell200 Russell200 Russell200 Russell200
Tesla Tesla Tesla Tesla Tesla
Facebook | Facebook Facebook Facebook Facebook Facebook
Bitcoins ‘ Amazon Bitcoins
Bitcoins Amazon Bitcoins
Proposed Tesla Facebook Tesla

Entropy

Table 3: Ranking according to entropy information

Conclusion

This article proposed a novel modified Shannon entropy that incorporates the stochastic behaviour of market derivatives
to quantify their associated uncertainty and risk. It demonstrates that traditional Shannon entropy theory can be enhanced
by considering the inherent randomness of data, particularly for highly volatile assets, as evidenced by the results. This
work contributes to the field of risk analysis by employing Shannon entropy to quantify the disparity arising from
stochasticity within the distribution.

The article also identified several key areas for future research. Further investigation is needed to address potential
inconsistencies identified in the formulation. Despite these limitations, the results are promising for various applications.
Future work should explore the applicability of incorporating the stochastic nature of data into other entropy families,
such as Kullback-Liebler divergence, mutual information, R "enyi entropy, Tsallis entropy, and others. This novel approach
has the potential to significantly benefit future research by highlighting the importance of accounting for randomness in
data. It paves the way for addressing the fundamental question of” what is the optimal distribution of data?” Ultimately,
the proposed novel Shannon entropy perspective offers an alternative way to quantify uncertainty in financial derivatives.
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