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Abstract. When solving waste management (WM) problems, it is often preferable to consider a 

number of quantifiably good alternatives that provide multiple, disparate viewpoints. This is 

because solid waste planning generally involves complicated problems that are riddled with 

incompatible performance objectives and contain inconsistent design requirements that are very 

difficult to quantify and capture when supporting decision models must be constructed. These 

potential alternatives need to satisfy the required system performance criteria and yet be maximally 

different from each other in the decision space. The approach for creating maximally different sets 

of solutions is referred to as modelling-to-generate-alternatives (MGA). Simulation-optimization 

approaches have frequently been employed to solve computationally difficult problems containing 

the significant stochastic uncertainties in waste management. This paper outlines an MGA 

approach for WM planning that can generate sets of maximally different alternatives for any 

stochastic, simulation-optimization method that employs a population-based solution procedure. 

This algorithmic approach is both computationally efficient and simultaneously produces the 

prescribed number of maximally different solution alternatives in a single computational run of 

the procedure. The efficacy of this stochastic MGA approach for creating alternatives is 

demonstrated using a “real world” waste management planning case.  
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1. Introduction 

Planners have frequently been confounded by issues related to the processing and management 

of waste [1][2]. Implementing effective management of waste management (WM) systems has 

proven to be both notoriously contentious and conflict-laden. Since WM systems generally contain 

all of the characteristics associated with complex planning situations, waste management problems 

have provided an ideal backdrop for the testing of an extensive assortment of decision support 

techniques used for decision-making [3]-[5]. WM decision-making frequently possess inconsistent 

and incompatible design specifications that can be difficult to formulate into supporting 

mathematical decision-models [1]-[6]. This situation commonly occurs when final decisions must 
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be constructed based not only upon clearly articulated specifications, but also upon environmental, 

political and socio-economic objectives that are either fundamentally subjective or not clearly 

articulated [7]-[10]. Although “optimal” solutions can be determined for the formulated 

mathematical models, whether these can be considered the best solution to the “real” problem 

remains somewhat dubious. Moreover, it may not be possible to explicitly convey many of the 

subjective considerations because there are numerous competing, adversarial stakeholder groups 

holding diametrically opposed perspectives. Therefore, many of the subjective aspects remain 

unknown, unquantified and unmodelled in the construction of the corresponding decision models. 

WM policy formulation can prove even more complicated when the various system components 

also contain stochastic uncertainties [10]. Consequently, waste management determination proves 

to be an extremely challenging and complicated enterprise [10][11]. 

Within WM decision-making, there are routinely many stakeholder groups holding completely 

incongruent standpoints, essentially dictating that waste managers need to construct decision 

frameworks that somehow simultaneously reflect numerous irreconcilable points of view. Under 

such circumstances, it is often more desirable to construct a small number of distinct alternatives 

that provide dissimilar viewpoints for the particular problem [3][7]. These dissimilar solutions 

should be close-to-optimal with respect to the specified objective(s), but be maximally different 

from each other within the decision domain. Numerous approaches collectively referred to as 

modelling-to-generate-alternatives (MGA) have been created to address this multi-solution 

requirement [6]-[8]. The principal motivation behind MGA is the production of a set of alternatives 

that are “good” with respect to the specified objective(s), but fundamentally dissimilar from each 

other in the decision space. Decision-makers then perform a subsequent appraisal of this set of 

alternatives to determine which option(s) most closely satisfy their specific goals. Consequently, 

MGA approaches are classified as decision support methods rather than as solution creation 

processes as assumed in traditional optimization. 

Early MGA algorithms employed direct, incremental approaches for constructing their 

alternatives by iteratively re-running their procedures whenever new solutions needed to be 

generated [6]-[10]. These iterative approaches replicated the seminal MGA technique of Brill et 

al. [8] where, once the initial mathematical formulation has been optimized, all supplementary 

alternatives are produced one-at-a-time. Therefore, these approaches all required n+1 iterations of 

their respective algorithms – firstly to optimize the original problem, then to construct each of the 

n subsequent alternatives [7][11]-[18]. 

In this paper, it is demonstrated how a set of maximally different solution alternatives can be 

generated by extending several earlier MGA approaches to stochastic optimization [12-18]. The 

stochastic algorithm provides an MGA process that can be performed by any population-based 

solution mechanism. This algorithm advances earlier concurrent procedures [13][15]-[18] by 

permitting the simultaneous generation of n distinct alternatives in a single computational run. 

Specifically, to generate n maximally different alternatives, the algorithm runs exactly the same 

number of times that a function optimization procedure needs to run (i.e. once) irrespective of the 

value of n [19]-[23]. The objective function is used to produce a maximum distance between the 

alternatives by ensuring that the alternatives are forced as far apart as possible. Furthermore, the 

stochastic MGA algorithm employs a novel data structure that permits simultaneous alternatives 

to be constructed in a very computationally effective way. The use of this data structure enables 

the above-mentioned solution generalization to all population-based methods. Consequently, this 

stochastic MGA algorithmic approach proves to be extremely computationally efficient. The 

efficacy of this method for waste management is demonstrated using a “real world” WM case 
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taken from [24] and [25]. 

2. Modelling to Generate Alternatives 

Mathematical optimization has fixated almost entirely on determining single optimal solutions 

to single-objective problems or constructing sets of noninferior solutions for multi-objective 

formulations [2][5][8]. While these approaches may create solutions to the mathematical models, 

whether these outputs are the best solutions to the “real” problems remains can be debatable 

[1][2][6][8]. Within most “real world” decision-making environments, there are countless system 

requirements and objectives that will never be explicitly apparent or included in the model 

formulation [1][5]. Furthermore, most subjective aspects unavoidably remain unmodelled and 

unquantified in the decision models constructed. This regularly occurs where final decisions are 

constructed based not only on modelled objectives, but also on more subjective stakeholder goals 

and socio-political-economic preferences [7]. Several incongruent modelling dichotomies are 

discussed in [6][8]-[10]. 

When unmodelled objectives and unquantified issues exist, non-traditional methods are required 

for searching the decision region not only for noninferior sets of solutions, but also for alternatives 

that are evidently sub-optimal to the modelled problem. Namely, any search for alternatives to 

problems known or suspected to contain unmodelled components must concentrate not only on a 

non-inferior set of solutions, but also necessarily on an explicit exploration of the problem’s 

inferior solution space.  

To demonstrate the implications of unmodelled objectives in a decision search, assume that an 

optimal solution for a maximization problem is X* with objective value Z1* [26]. Suppose a 

second, unquantified, maximization objective Z2 exists that represents some “politically 

acceptable” factor. Assume that the solution, Xa, belonging to the 2-objective noninferior set, exists 

that corresponds to a best compromise solution if both objectives could have been simultaneously 

considered. Although Xa would be considered as the best solution to the real problem, in the actual 

mathematical model it would appear inferior to solution X*, since Z1a   Z1*. Therefore, when 

unquantified components are included in the decision-making process, inferior decisions to the 

mathematically modelled problem could be optimal to the underlying “real” problem. Thus, when 

unquantified issues and unmodelled objectives could exist, alternative solution procedures are 

required to not only explore the decision domain for noninferior solutions to the modelled problem, 

but also to concurrently search the decision domain for inferior solutions. Population-based 

algorithms prove to be proficient solution methods for concurrent searches throughout a decision 

space.  

The objective of MGA is to construct a workable set of alternatives that are quantifiably good 

with respect to the modelled objectives, yet are as different as possible from each other within the 

solution space. By accomplishing this requirement, the resulting set of alternatives is able to 

provide truly different perspectives that perform similarly with respect to the known modelled 

objective(s) yet very differently with respect to various potentially unmodelled aspects. By 

creating these good-but-different solutions, the decision-makers are able to explore potentially 

desirable qualities within the alternatives that might be able to satisfy the unmodelled objectives 

to varying degrees of stakeholder acceptability. 

To motivate the MGA process, it is necessary to more formally characterize the mathematical 

definition of its goals [6][7]. Assume that the optimal solution to an original mathematical model 

is X* with corresponding objective value Z* = F(X*). The resultant difference model can then be 
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solved to produce an alternative solution, X, that is maximally different from X*:  

 Maximize    (X, X*) = Min
i

 | Xi - Xi* |     (1) 

 Subject to:    X  D      (2) 

      | F(X) - Z* |   T    (3) 

 

where   represents an appropriate difference function (shown in (1) as an absolute difference) 

and T is a tolerance target relative to the original optimal objective value Z*. T is a user-specified 

limit that determines what proportion of the inferior region needs to be explored for acceptable 

alternatives. This difference function concept can be extended into a difference measure between 

any set of alternatives by replacing X* in the objective of the maximal difference model and 

calculating the overall minimum absolute difference (or some other function) of the pairwise 

comparisons between corresponding variables in each pair of alternatives – subject to the condition 

that each alternative is feasible and falls within the specified tolerance constraint. 

The population-based MGA procedure to be introduced is designed to generate a pre-determined 

small number of close-to-optimal, but maximally different alternatives, by adjusting the value of 

T and solving the corresponding maximal difference problem instance by exploiting the population 

structure of the algorithm. The survival of solutions depends upon how well the solutions perform 

with respect to the problem’s originally modelled objective(s) and simultaneously by how far away 

they are from all of the other alternatives generated in the decision space. 

3. Simulation-Optimization for Stochastic Optimization 

Finding optimal solutions to large stochastic problems proves complicated when numerous 

system uncertainties must be directly incorporated into the solution procedures [26]-[29]. 

Simulation-Optimization (SO) is a broadly defined family of stochastic solution approaches that 

combines simulation with an underlying optimization component for optimization [26]. In SO, all 

unknown objective functions, constraints, and parameters are replaced by simulation models in 

which the decision variables provide the settings under which simulation is performed. 

The general steps of SO can be summarized in the following fashion ([27], [30]). Suppose the 

mathematical model of the optimization problem contains n decision variables, 
iX , represented in 

the vector X = [
1X ,

2X ,…,
nX ]. If the objective function is expressed by F and the feasible region 

is designated by D, then the mathematical programming problem is to optimize F(X) subject to X 

 D. When stochastic conditions exist, values for the objective and constraints can be determined 

by simulation. Any solution comparison between two different solutions X1 and X2 requires the 

evaluation of some statistic of F modelled with X1 compared to the same statistic modelled with 

X2 [26][31]. These statistics are calculated by simulation, in which each X provides the decision 

variable settings employed in the simulation. While simulation provides a means for comparing 

results, it does not provide the mechanism for determining optimal solutions to problems. Hence, 

simulation cannot be used independently for stochastic optimization. 

Since all measures of system performance in SO are stochastic, every potential solution, X, must 

be calculated through simulation. Because simulation is computationally intensive, an 

optimization algorithm is employed to guide the search for solutions through the problem’s 

feasible domain in as few simulation runs as possible [28][31]. As stochastic system problems 

frequently contain numerous potential solutions, the quality of the final solution could be highly 
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variable unless an extensive search has been performed throughout the entire feasible region. A 

stochastic SO approach contains two alternating computational phases; (i) an “evolutionary” 

module directed by some optimization (frequently a metaheuristic) method and (ii) a simulation 

module [32]. Because of the stochastic components, all performance measures are necessarily 

statistics calculated from the responses generated in the simulation module. The quality of each 

solution is found by having its performance criterion, F, evaluated in the simulation module. After 

simulating each candidate solution, their respective objective values are returned to the 

evolutionary module to be utilized in the creation of ensuing candidate solutions. Thus, the 

evolutionary module aims to advance the system toward improved solutions in subsequent 

generations and ensures that the solution search does not become trapped in some local optima. 

After generating new candidate solutions in the evolutionary module, the new solution set is 

returned to the simulation module for comparative evaluation. This alternating, two-phase search 

process terminates when an appropriately stable system state (i.e. an optimal solution) has been 

attained. The optimal solution produced by the procedure is the single best solution found 

throughout the course of the entire search process [32]. 

Population-based algorithms are conducive to SO searches because the complete set of candidate 

solutions maintained in their populations permit searches to be undertaken throughout multiple 

sections of the feasible region, concurrently. For population-based optimization methods, the 

evolutionary phase evaluates the entire current population of solutions during each generation of 

the search and evolves from a current population to a subsequent one. A primary characteristic of 

population-based procedures is that better solutions in a current population possess a greater 

likelihood for survival and progression into the subsequent population. 

It has been shown that SO can be used as a very computationally intensive, stochastic MGA 

technique [31][33]. However, because of the very long computational runs, several approaches to 

accelerate the search times and solution quality of SO have been examined subsequently [30]. The 

next section provides an MGA algorithm that incorporates stochastic uncertainty using SO to much 

more efficiently generate sets of maximally different solution alternatives. 

4. Population-based Simulation-Optimization MGA Algorithm 

In this section, a data structure is employed that enables an MGA solution approach via any 

population-based algorithm [34]-[36]. Suppose that it is desired to produce P alternatives that each 

possess n decision variables and that the population algorithm is to possess K solutions in total. 

That is, each solution contains one possible set of P maximally different alternatives. Let Yk, k = 

1,…, K, represent the kth solution which consists of one complete set of P different alternatives. 

Specifically, if Xkp corresponds to the pth alternative, p = 1,…, P, of solution k, k = 1,…, K, then 

Yk can be represented as 

Yk = [Xk1, Xk2,…, XkP] .      (4) 

If Xkjq, q = 1,…, n, is the qth variable in the jth alternative of solution k, then  

Xkj = (Xkj1, Xkj2,…, Xkjn) .      

 (5) 

Consequently, an entire population, Y, consisting of K different sets of P alternatives can be 

written in vectorized form as, 

Y’ = [Y1, Y2,…, YK] .      

 (6) 
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The following population-based MGA method produces a pre-determined number of close-to-

optimal, but maximally different alternatives, by modifying the value of the bound T in the 

maximal difference model and using any population-based method to solve the corresponding, 

maximal difference problem. The MGA algorithm that follows constructs a pre-determined 

number of maximally different, near-optimal alternatives, by modifying the bound value T in the 

maximal difference model and using any population-based technique to solve the corresponding 

maximal difference problem. Each solution in the population comprises one set of p different 

alternatives. By exploiting the co-evolutionary aspects of the algorithm, the algorithm evolves each 

solution toward sets of dissimilar local optima within the solution domain. In this processing, each 

solution alternative mutually experiences the search steps of the algorithm. Solution survival 

depends upon both how well the solutions perform with respect to the modelled objective(s) and 

by how far apart they are from every other alternative in the decision space. 

A straightforward process for generating alternatives solves the maximum difference model 

iteratively by incrementally updating the target T whenever a new alternative needs to be produced 

and then re-solving the resulting model [34]. This iterative approach parallels the seminal Hop, 

Skip, and Jump (HSJ) MGA algorithm [8] in which the alternatives are created one-by-one through 

an incremental adjustment of the target constraint. While this approach is straightforward, it entails 

a repetitive execution of the optimization algorithm [7][12][13]. To improve upon the stepwise 

HSJ approach, a concurrent MGA technique was subsequently designed based upon co-evolution 

[13][15][17]. In a co-evolutionary approach, pre-specified stratified subpopulation ranges within 

an algorithm’s overall population are established that collectively evolve the search toward the 

specified number of maximally different alternatives. Each desired solution alternative is 

represented by each respective subpopulation and each subpopulation undergoes the common 

processing operations of the procedure. The survival of solutions in each subpopulation depends 

simultaneously upon how well the solutions perform with respect to the modelled objective(s) and 

by how far away they are from all of the other alternatives. Consequently, the evolution of solutions 

in each subpopulation toward local optima is directly influenced by those solutions contained in 

all of the other subpopulations, which forces the concurrent co-evolution of each subpopulation 

towards good but maximally distant regions within the decision space according to the maximal 

difference model [7]. Co-evolution is also much more efficient than a sequential HSJ-style 

approach in that it exploits the inherent population-based searches to concurrently generate the 

entire set of maximally different solutions using only a single population [12][17]. 

While concurrent approaches can exploit population-based algorithms, co-evolution can only 

occur within each of the stratified subpopulations. Consequently, the maximal differences between 

solutions in different subpopulations can only be based upon aggregate subpopulation measures. 

Conversely, in the following simultaneous MGA algorithm, each solution in the population 

contains exactly one entire set of alternatives and the maximal difference is calculated only for 

that particular solution (i.e. the specific alternative set contained within that solution in the 

population). Hence, by the evolutionary nature of the population-based search procedure, in the 

subsequent approach, the maximal difference is simultaneously calculated for the specific set of 

alternatives considered within each specific solution – and the need for concurrent subpopulation 

aggregation measures is avoided. 

Using the data structure terminology, the steps for the population-based MGA algorithm are as 

follows [14][19]-[23][34]-[38]. It should be readily apparent that the stratification approach 

employed by this method can be easily modified for any population-based algorithm.  

Initialization Step. Solve the original optimization problem to find its optimal solution, X*. 
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Based upon the objective value F(X*), establish P target values. P represents the desired number 

of maximally different alternatives to be generated within prescribed target deviations from the 

X*. Note: The value for P has to have been set a priori by the decision-maker. 

Without loss of generality, it is possible to forego this step and to use the algorithm to find X* 

as part of its solution processing in the subsequent steps. However, this significantly increases the 

number of iterations of the computational procedure and the initial stages of the processing become 

devoted to finding X* while the other elements of each population solution are retained as 

essentially “computational overhead”. 

Step 1. Create an initial population of size K where each solution contains P equally-sized 

partitions. The partition size corresponds to the number of decision variables in the original 

optimization problem. Xkp represents the pth alternative, p = 1,…,P, in solution Yk, k = 1,…,K. 

Step 2. In each of the K solutions, evaluate each Xkp, p = 1,…,P, using the simulation module 

with respect to the modelled objective. Alternatives meeting their target constraint and all other 

problem constraints are designated as feasible, while all other alternatives are designated as 

infeasible. A solution can only be designated as feasible if all of the alternatives contained within 

it are feasible. 

Step 3. Apply an appropriate elitism operator to each solution to rank order the best individuals 

in the population. The best solution is the feasible solution containing the most distant set of 

alternatives in the decision space (the distance measures are defined in Step 5).  

Note: Because the best solution to date is always retained in the population throughout each 

iteration, at least one solution will always be feasible. A feasible solution for the first step can 

always consists of P repetitions of X*. 

Step 4. Stop the algorithm if the termination criteria (such as maximum number of iterations or 

some measure of solution convergence) are met. Otherwise, proceed to Step 5. 

Step 5. For each solution Yk, k = 1,…, K, calculate D1
k which represents the Max-Sum distance 

measure determined between all of the alternatives contained within the solution. 

As an illustrative example for calculating a distance measure, compute 

D1
k = 

1 ( Xka, Xkb) = 
, ,

Min
a b q

 | Xkaq – Xkbq | ,  a = 1,…,P, b = 1,…,P, q = 1,…,n,  (7) 

D1
k denotes the minimum absolute deviation between all of the alternatives contained within 

solution k. Alternatively, the distance function could be calculated using some other appropriately 

defined measure. 

Step 6. This step orders the specific solutions by those solutions which contain the set of 

alternatives which are most distant from each other. The goal of maximal difference is to force 

alternatives to be as far apart as possible in the decision space from the alternatives of each of the 

partitions within each solution.  

Let Dk = G(D1
k) represent the objective for solution k. Rank the solutions according to the 

distance measure Dk objective – appropriately adjusted to incorporate any constraint violation 

penalties for infeasible solutions.  

Step 7. Apply applicable algorithmic “change operations” to each solution within the population 

and return to Step 2. 
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5. Waste Management Case Study 

As indicated throughout the previous sections, WM decision-makers faced with situations 

containing numerous uncertainties often prefer to select from a set of “near best” alternatives that 

differ significantly from each other in terms of the system structures characterized by their decision 

variables. The efficacy of the stochastic, population-based MGA procedure will be illustrated 

using the WM case of Hamilton-Wentworth taken from [24] and [25]. While this section briefly 

summarizes the case, more explicit details, data, and descriptions can be found in [24]. 

Located at the Western-most edge of Lake Ontario, the Municipality of Hamilton-Wentworth 

covers an area of 1,100 square kilometers and includes six towns and cities; Hamilton, Dundas, 

Ancaster, Flamborough, Stoney Creek, and Glanbrook. The Municipality is considered the 

industrial centre of Canada, although it simultaneously incorporates diverse areas of not only 

heavy industrial production, but also densely populated urban space, regions of significant 

suburban development, and large proportions of rural/agricultural environments. Prior to the study 

of Yeomans et al. [24], the municipality had not been able to effectively incorporate inherent 

uncertainties into their planning processes and, therefore, had not performed effective systematic 

planning for the flow of wastes within the region. The WM system within the region is a very 

complicated process which is affected by economic, technical, environmental, legislational and 

political factors. 

The WM system within Hamilton-Wentworth needs to satisfy the waste disposal requirements 

of its half-million residents who, collectively, produce more than 300,000 tons of waste per year, 

with a budget of $22 million. The region had constructed a system to manage these wastes 

composed of: a waste-to-energy incinerator referred to as the Solid Waste Reduction Unit (or 

SWARU); a 550 acre landfill site at Glanbrook; three waste transfer stations located in Dundas 

(DTS), in East Hamilton at Kenora (KTS), and on Hamilton Mountain (MTS); a household 

recycling program contracted to and operated by the Third Sector Employment Enterprises; a 

household/hazardous waste depot, and; a backyard composting program. 

The three transfer stations have been strategically located to receive wastes from the disparate 

municipal (and individual) sources and to subsequently transfer them to the waste management 

facilities for final disposal; either to SWARU for incineration or to Glanbrook for landfilling. 

Wastes received at the transfer stations are compacted into large trucks prior to being hauled to the 

landfill site. These transfer stations provide many advantages in waste transportation and 

management; these include reducing traffic going to and from the landfill, providing an effective 

control mechanism for dumping at the landfill, offering an inspection area where wastes can be 

viewed and unacceptable materials removed, and contributing to a reduction of waste volume 

because of the compaction process. The SWARU incinerator burns up to 450 tons of waste per 

day and, by doing so, generates about 14 million kilowatt hours of electricity per year which can 

be either used within the plant itself or sold to the provincial electrical utility. SWARU also 

produces a residual waste ash which must subsequently be transported to the landfill for disposal. 

Within this WM system, decisions have to be made regarding whether waste materials should 

be recycled, landfilled or incinerated and additional determinations have to be made as to which 

specific facilities would process the discarded materials. Included within these decisions is a 

determination of which one of the multiple possible pathways that the waste would flow through 

in reaching the facilities. Conversely, specific pathways selected for waste material flows 

determine which facilities process the waste.  It was possible to subdivide the various waste 

streams with each resulting substream sent to a different facility. Since cost differences from 
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operating the facilities at different capacity levels produced economies of scale, decisions have to 

be made to determine how much waste should be sent along each flow pathway to each facility. 

Therefore, any single WM policy option is composed of a combination of many decisions 

regarding which facilities received waste material and what quantities of waste are sent to each 

facility. All of these decisions are compounded by overriding system uncertainties. The complete 

mathematical model used for WM planning appears subsequently. This mathematical formulation 

was used not only to examine the existing municipal WM system, but also to prepare the 

municipality for several potentially enforced future changes to its operating conditions.  

Yeomans et al. [24] examined three likely future scenarios, with each scenario involving 

potential incinerator operations. Scenario 1 considered the existing WM system and corresponded 

to a status quo case. Scenario 2 examined what would occur should the incinerator operate at its 

upper design capacity; corresponding to a situation in which the municipality would landfill as 

little waste as possible. Scenario 3 permitted the incinerator to operate anywhere in its design 

capacity range; from being closed completely to operating up to its maximum capacity. 

In the complete mathematical model for WM planning in Hamilton-Wentworth [24], any 

uncertain parameter A is represented by A . In the model, the various districts from which waste 

originates will be identified using subscript i; where i = 1, 2,…, 17 denotes the originating district. 

The transfer stations will be denoted by subscript j, in which j = 1, 2, 3 represents the number 

assigned to each transfer station, where DTS = 1, KTS = 2, and MTS = 3.  Subscript k, k = 1, 2, 3, 

identifies the specific waste management facility, with Landfill = 1, SWARU = 2, and Third Sector 

= 3. The decision variables for the problem will be designated by 
ijx , 

jky  and ikz  where 
ijx  

represents the proportion of solid waste sent from district i to transfer station j; 
jky  corresponds to 

the proportion of waste sent from transfer station j to waste management facility k, and ikz  

corresponds to the proportion of waste sent from district i to waste management facility k. For 

notational brevity, and also to reflect the fact that no district is permitted to deliver their waste 

directly to the landfill, define 1iz = 0, for i = 1, 2,…, 17. 

The cost for transporting one ton of waste from district i to transfer station j is denoted by 
ijtx , 

that from transfer station j to waste management facility k is represented by 
jkty , and that from 

district i to waste management facility k is iktz . The per ton cost for processing waste at transfer 

station j is j  and that at waste management facility k is k . Two of the waste management 

facilities can produce revenues from processing wastes. The revenue generated per ton of waste is 

2r  at SWARU and 3r  at the Third Sector recycling facility. The minimum and maximum 

processing capacities at transfer station j are jK  and jM , respectively. Similarly, the minimum 

and maximum capacities at waste management facility k are kL  and kN , respectively. The quantity 

of waste, in tons, generated by district i is iW , and the proportion of this waste that is recyclable is 

ia . The proportion of recyclable waste flowing into transfer station j is jRW .  The proportion of 

residue (residual wastes such as the incinerated ash at SWARU) generated by waste management 

facility j is jQ , where 
1Q  = 0 by definition. This waste residue must be shipped to the landfill for 

final disposal. 
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Formulating any single WM policy corresponds to finding a decision variable solution satisfying 

constraints (9) through (38), with cost determined by objective (8) [24]. 

 Minimize Cost = 
5

1p=

 pT  + 
6

1q=

 qP  - 
3

2r=

 rR      (8) 

Subject to: 

 
1T  = 

17

1i=


3

1j=

 ijtx ijx iW        (9) 

 
2T  = 

17

1i=


3

1k=

 iktz ikz iW        (10) 

 3T  = 
17

1i=


3

1j=


3

1k=

 jkty jky ijx iW       (11) 

 
4T = ( tsl )

2Q
17

1i=

 iW [ 2iz +
3

1j=

 2jy ijx ]     (12) 

 5T = ( ttl ) 3Q
17

1i=

 iW [ 3iz +
3

1j=

 3jy ijx ]      (13) 

 
1P  = 

1
17

1i=

 iW
3

1k=

 [ kQ ikz +
3

1j=

 ijx jky ]     (14) 

 
2P  = 

2
17

1i=

 iW [ 2iz +
3

1j=

 ijx 2jy ]      (15) 

 3P  = 3
17

1i=

 iW [ 3iz +
3

1j=

 ijx 3jy ]      (16) 

 
4P  = 

1
17

1i=

 1ix iW         (17) 

 5P  = 
2

17

1i=

 iW [ 2ix + 3Q { 3iz +
3

1j=

 ijx 3jy }]     (18) 

 6P  = 3
17

1i=

 3ix iW         (19) 

 2R  = 2r
17

1i=

 iW [ 2iz +
3

1j=

 ijx 2jy ]      (20) 

 3R  = 3r
17

1i=

 iW [ 3iz +
3

1j=

 ijx 3jy ]      (21) 

 
17

1i=

 1ix iW    
1M         (22) 
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17

1i=

 iW [ 2ix + 3Q { 3iz +
3

1j=

 ijx 3jy }]   
2M      (23) 

 
17

1i=

 3ix iW    3M         (24) 

 
17

1i=

 1ix iW    
1K         (25) 

 
17

1i=

 iW [ 2ix + 3Q { 3iz +
3

1j=

 ijx 3jy }]   
2K      (26) 

 
17

1i=

 3ix iW    3K         (27) 

 
17

1i=

 iW
3

1k=

 [ kQ ikz +
3

1j=

 ijx jky ]   
1N      (28) 

 
17

1i=

 iW [ 2iz +
3

1j=

 ijx 2jy ]   
2N       (29) 

 
17

1i=

 iW [ 3iz +
3

1j=

 ijx 3jy ]   3N       (30) 

 
17

1i=

 iW [ 2iz +
3

1j=

 ijx 2jy ]   
2L       (31) 

 
17

1i=

 iW [ 3iz +
3

1j=

 ijx 3jy ]   3L       (32) 

 
3

1j=

 ijx  +
3

1k=

 ikz  = 1   i = 1,2,…,17    (33) 

 
3

1j=

 ijx jRW  + 3iz    ia   i = 1,2,…,17    (34) 

 
3

1k=

 jky  = 1    j = 1,2,3    (35) 

 
17

1i=

 iW [ 2ix + 3Q { 3iz +
3

1j=

 ijx 3jy }]  = 
17

1i=


3

1k=

 2ix iW 2ky    (36) 

 
17

1i=

 ijx iW
3jy  = jRW

17

1i=

 ijx iW   j = 1,2,3   (37) 

 
ijx   0, 

jky   0, ikz   0  i = 1,2,…,17,  j = 1,2,3,  k = 1,2,3 (38) 

In the objective function (8), the total transportation costs for wastes generated are provided by 

equations (9) to (13). Equation (9) calculates the transportation costs for waste flows from the 

districts (i.e. the cities and towns) to the transfer stations, while equation (10) provides the costs 

for transporting the waste from the districts directly to the waste management facilities. The total 
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cost for transporting waste from the transfer facilities to the waste management facilities is 

determined in equation (11). The transportation costs for residue disposal created at SWARU and 

the Third Sector are given by equations (12) and (13), respectively. The total processing costs for 

the transfer stations and waste management facilities are expressed in (14) through (19). Here, kP  

represents the processing costs at waste management facility k, k = 1,2,3, and 
( 3)jP +

 represents the 

processing costs at transfer station j, j = 1,2,3. The processing cost, 
1P , in (14) indicates that the 

landfill receives wastes from both SWARU and the Third Sector in addition to the waste sent from 

the transfer stations. The relationship specifying the processing costs at KTS, 5P  in (18), is more 

complicated than for DTS and MTS, since KTS must also process the Third Sector’s unrecyclable 

residue (this waste processing pattern can also be observed in equations (23) and (26)) and this 

residue may have been sent there directly from the districts or from the other transfer stations. The 

revenue generated by SWARU, 
2R , and by the Third Sector, 3R , are determined by expressions 

(20) and (21). All of these cost and revenue elements are amalgamated into objective function (8). 

Upper and lower capacity limits placed upon the transfer stations DTS, KTS and MTS, are 

provided by constraints (22) through (27), while capacity limits established for the landfill, 

SWARU and the Third Sector are given by (28) to (32). The waste processing relationship for the 

landfill is more complicated than for the other waste management facilities, since the landfill 

receives residue from both SWARU and the Third Sector. Furthermore, while there is no lower 

operating requirement placed upon the use of the landfill, both SWARU and the Third Sector 

require minimum levels of activity in order for their ongoing operations to remain economically 

viable. Mass balance constraints must also be included to ensure that all generated waste is 

disposed and that the amount of waste flowing into a transfer facility matches the amount flowing 

out of it. Constraint (33) ensures the disposal of all waste produced by each district.  Recyclable 

waste disposal is established by constraint (34). In (34), it is recognized that not all recyclable 

waste produced at a district is initially sent to the Third Sector recycling facility (i.e. some 

recyclable waste may initially be discarded as “regular” garbage) and that some, but not all, 

recyclable waste received at a transfer station is subsequently sent for recycling. The expression 

in (35) ensures that all waste received by each transfer station must be sent to a waste management 

facility. Equation (36) provides the mass balance constraint for the wastes entering and leaving 

KTS (which handles more complicated waste patterns than the other two transfer stations). 

Constraint (37) describes the mass balance requirement for recyclable wastes received by the 

transfer stations that are then forwarded to the Third Sector. Finally, (38) establishes non-

negativity requirements for the decision variables. Hence, any specific WM policy formulated for 

Hamilton-Wentworth would require the determination of a decision variable solution that satisfies 

constraints (9) to (38) and would be evaluated by its resulting cost found using objective (8).   

Yeomans et al. [24] ran SO for a 24-hour period to determine best solutions for each scenario. 

For the existing system (Scenario 1), a solution that would never cost more than $20.6 million was 

constructed. For Scenarios 2 and 3, Yeomans et al. [24] produced optimal solutions costing $22.1 

million and $18.7 million, respectively. In all of these scenarios, SO was used exclusively as a 

function optimizer with the goal being to produce only single best solutions. 

As noted, WM planners faced with difficult and controversial selections generally prefer to 

choose from a set of near-optimal alternatives that differ significantly from each other in terms of 

the system structures characterized by their decision variables [37]. In order to create these 

alternative planning options for the three WM system scenarios, it would be possible to place extra 
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target constraints into the original model which would force the generation of solutions that were 

different from their respective, initial optimal solutions. Suppose for example that four additional 

planning alternative options were created through the inclusion of a technical constraint on the 

objective function that increased the total system cost of the original model from 2.5% up to 10% 

in increments of 2.5%. By adding these incremental target constraints to the original SO model 

and sequentially resolving the problem 4 more times for each scenario (i.e. another 12 additional 

computational runs of the SO procedure), it would be possible to create a specific number of 

alternative policies for WM planning [37][38]. 

However, to improve upon the process of running fifteen separate instances of the 

computationally intensive SO algorithm to generate these solutions, the population-based MGA 

procedure described in the previous section was run only once, thereby producing the 15 

alternatives shown in Table 1. Each column of the table shows the overall system costs for the 5 

maximally different options generated for each of the three scenarios. Given the performance 

bounds established for the objective in each problem instance, the decision-makers can feel 

reassured by the stated performance for each of these options while also being aware that the 

perspectives provided by the set of dissimilar decision variable structures are as different from 

each other as is feasibly possible. Hence, if there are stakeholders with incompatible standpoints 

holding diametrically opposing viewpoints, the policy-makers can perform an assessment of these 

different options without being myopically constrained by a single overriding perspective based 

solely upon the objective value. 

 

Annual WM Costs Scenario 1 Scenario 2 Scenario 3 

Best Solution Found 20.61 22.10 18.71 

Best Solution Within 

2.5% 20.99 22.88 18.89 

Best Solution Within 

5.0% 21.31 23.01 19.47 

Best Solution Within 

7.5% 22.28 23.62 19.92 

Best Solution Within 10% 22.65 24.17 20.66 

 

Table 1 Annual WM Costs ($ Millions) for 5 Maximally Different Alternatives for Scenario1, 

Scenario 2 and Scenario 3 

Although a mathematically optimal solution may not provide the best approach to the real 

problem, it can be shown that the MGA procedure does indeed produce very good solution values 

for the originally modelled problem, itself. Table 2 clearly highlights how the “Best Solution 

Found” by the MGA procedure for each scenario are each identical to the ones found by function 

optimization alone in [24]. This implies that the MGA approach can essentially be used for direct 

optimization of a problem in conjunction with its alternative generation tasks. 
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 Scenario 1 Scenario 2 Scenario 3 

Yeomans et al. (2003) using SO  20.6  22.1  18.7  

Best Solution Found using 

MGA 

20.6  22.1  18.7  

 

Table 2 Best Annual WM Costs ($ millions) for (i) Existing System (Scenario 1), (ii) Incinerator 

at Maximum Capacity (Scenario 2), and (iii) Incinerator at Any Level (Scenario 3) 

 

The computational example highlights several important aspects with respect to the MGA 

approach: (i) Population-based algorithms can be effectively employed as the underlying solution 

search procedure for SO routines; (ii) Population-based solution searches can simultaneously 

generate more good alternatives than planners would be able to create using other MGA 

approaches; (iii) By the design of the MGA algorithm, the alternatives generated are good for 

planning purposes since all of their structures are guaranteed to be as mutually and maximally 

different from each other as possible; (iv) The approach is very computationally efficient since it 

need be run only once to generate its entire set of multiple, good solution alternatives (i.e. to 

generate n maximally different solution alternatives, the MGA algorithm would run exactly the 

same number of times that the SO would need to be run for function optimization purposes alone 

– namely once – irrespective of the value of n); and, (v) The best overall solutions produced by 

the MGA procedure will be identical to the best overall solutions that would be produced for 

function optimization purposes alone. 

 

6. Conclusions 

Waste management problems contain multidimensional performance specifications which 

inevitably include incongruent performance objectives and unquantifiable modelling features. 

These problems also often possess incompatible design specifications which are impossible to 

completely formulate into the supporting decision models. Consequently, there are unmodelled 

problem components, generally not apparent during model construction, that can significantly 

influence the acceptability of any model’s solutions. These competing and ambiguous components 

force WM decision-makers to incorporate many conflicting requirements into their decision 

process prior to the final solution determination. Consequently, waste management decision-

makers generally prefer to select from a set of distinct planning perspectives. 

This paper has employed a computationally efficient population-based stochastic MGA 

procedure for WM planning. This MGA approach establishes how population-based algorithms 

can simultaneously construct entire sets of near-optimal, maximally different alternatives by 

exploiting the evolving solution characteristics in population-based solution algorithms. In an 

MGA role, the employed objective can efficiently generate the requisite set of dissimilar 

alternatives, with each generated solution suggesting an entirely different perspective to the 

problem. Since population-based algorithms can be extended to an eclectic variety of problem 

settings, the practicality of this stochastic MGA method can be used on a diverse spectrum of “real 

world” applications. These extensions will be considered in future studies. 
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