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ABSTRACT 

 

This study is on model selection in multiple regression models. Data for this study were collected 

in Nigerian bottling company plc, Owerri plant from 1999 to 2013. The response variable is 

budgeted profit, while the explanatory variables are budgeted production and budgeted sales. 

Four regression models; Linear, Lin-Log, Polynomial, and Inverse were examined in this study. 

The E-views software was used in this study. Four model selection techniques known as; 

coefficient of determination, Akaike Information Criterion, Schwarz Information Criterion, and 

Hannan-Quinn Information Criterion were used to select the best model. From the analysis, it 

can be concluded that the nonlinear models perform better than the linear model. However, in the 

overall goodness of fit assessment, the study concluded that the polynomial regression model 

performs far better than the other three regression models used in this study. Therefore, future 

researchers should look at a similar work by incorporating other nonlinear regression models like 

Double-Log and Log-Lin Regression models to compare results. It should be noted by future 

researchers that if Double-Log and Log-Lin Regression models are employed, then Quasi - R2 is 

needed instead of R2 as employed in this study. 

Key words: Coefficient of Determination, Akaike Information Criterion, Schwarz Information 

Criterion, Hannan-Quinn Information Criterion, Regression models 

Background to the Study 

Fitting of linear and nonlinear models to data is normally employed within all fields of science; 

pharmaceutical and biochemical assay quantification, even though fitting a linear model to data 
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seldom arises, because most data tend to follow nonlinear models. Nonlinear models exist, and 

the choice of selecting the right model for the data is a mixture of experience, knowledge about 

the underlying process and statistical interpretation of the fitting outcome. It is of paramount 

important in quantifying the validity of a fit by some measure which discriminates a 'good' from 

a 'bad' fit. Many researchers usually employ a common measure known as the coefficient of 

determination R2 used in linear regression when conducting calibration experiments for samples 

to be quantified (Montgomery et al, 2006). Hence, in the linear perspective, this measure is very 

intuitive as values between 0 and 1 produce an easy interpretation of how much of the variance 

in the data is explained by the fit. Even though for some time, it has been established that R2 is an 

inadequate measure for nonlinear regression, many scientists and researchers still make use of it 

in studies dealing with nonlinear data analysis (Nagelkerke, 1991; Magee, 1990). According to 

Juliano and Williams (1987), several initial and older descriptions for R2 being of no avail in 

nonlinear fitting had pointed out this issue but have probably fallen into oblivion. This 

observation might be due to differences in the mathematical background of trained statisticians 

and researchers who often employ statistical methods but lack detailed statistical insight (Spiess 

and Neumeyer, 2010). 

Having stated that researchers indiscriminately employ R2 as a means of assessing the validity of 

a particular model when dealing with nonlinear data fit, it is stated that R2 is not an optimal 

choice in a nonlinear regime as the total sum-of-squares (TSS) is not equal to the regression sum-

of-squares (REGSS) plus the residual sum-of-squares (RSS), as is the case in linear regression, 

and hence it lacks the appropriate interpretation. The rationale behind a high occurrence in solely 

using R2 values in the validity of nonlinear models could be as a result of researchers not being 

aware of this misconception. 

Even though the use of only R2 to access the performance of nonlinear data analysis has been 

discouraged, this study will employ it together with other three model selection techniques 

known as; Akaike Information Criterion, Schwarz Information Criterion, and Hannan-Quinn 

Information Criterion for proper interpretation and conclusion.  

Literature Review 

Scarneciu et al (2017) worked on Comparison of Linear and Non-linear Regression Analysis to 

determine pulmonary pressure in hyperthyroidism. The study aimed at assessing the incidence of 

pulmonary hypertension (PH) at newly diagnosed hyperthyroid patients and at finding a simple 

model showing the complex functional relation between pulmonary hypertension in 

hyperthyroidism and the factors causing it. The 53 hyperthyroid patients (H-group) were 

evaluated mainly by using an echocardiographical method and compared with 35 euthyroid (E-

group) and 25 healthy people (C-group). In order to identify the factors causing pulmonary 

hypertension, the statistical method of comparing the values of arithmetical means was 

employed. By applying the linear regression method described by a first-degree equation the line 

of regression (linear model) was determined; by applying the non-linear regression method 

described by a second degree equation, a parabola-type curve of regression (non-linear or 

polynomial model) was determined. The study made the comparison and the validation of these 

two models by calculating the determination coefficient (criterion 1), the comparison of residuals 

(criterion 2), application of AIC criterion (criterion 3) and use of F-test (criterion 4). The result 
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of the study revealed that from the H-group, 47% have pulmonary hypertension completely 

reversible when obtaining euthyroidism. The factors causing pulmonary hypertension were 

identified: previously known- level of free thyroxin, pulmonary vascular resistance, cardiac 

output; new factors identified in the study- pre-treatment period, age, systolic blood pressure. 

According to the four criteria and to the clinical judgment, the study considered that the 

polynomial model (graphically parabola- type) was better than the linear one. The study thereby 

concluded that the better model showing the functional relation between the pulmonary 

hypertension in hyperthyroidism and the factors identified in the study was given by a 

polynomial equation of second degree where the parabola was its graphical representation. 

Hamidian et al (2008) researched on comparison of linear and nonlinear models for estimating 

brain deformation using finite element method. The study presented finite element computation 

for brain deformation during craniotomy. The results were used to illustrate the comparison 

between two mechanical models: linear solid-mechanic model, and non linear finite element 

model. To this end, the study employed a test sphere as a model of the brain, tetrahedral finite 

element mesh, two models that described the material property of the brain tissue, and function 

optimization that optimized the model’s parameters by minimizing distance between the 

resulting deformation and the assumed deformation. Linear and nonlinear model assumed finite 

and large deformation of the brain after opening the skull respectively. By using the accuracy of 

the optimization process, the study concluded that the accuracy of nonlinear model was higher 

but its execution time was six time of the linear model. 

Aristizábal-Giraldo et al (2016) carried out a study on a comparison of linear and nonlinear 

model performance of shia_landslide: a forecasting model for rainfall-induced landslides. The 

study explained that landslides are one of the main causes of global human and economic losses. 

The study compared the forecasting performance of linear and nonlinear SHIA_Landslide model. 

The results obtained for the La Arenosa Catchment during the September 21, 1990 rainstorm 

showed that the nonlinear SHIA_Landslide replicated more accurately landslides triggered by 

rainfall features. 

 

Hunt and Maurer (2016) did a work on comparison of linear and nonlinear feedback control of 

heart rate for treadmill running. The purpose of the study was to compare linear (L) and 

nonlinear (NL) controllers using quantitative performance measures. Sixteen healthy male 

subjects participated in the experimental L vs. NL comparison. The linear controller was 

calculated using a direct analytical design that employed an existing approximate plant model. 

The nonlinear controller had the same linear component, but it was augmented using static plant-

nonlinearity compensation. At moderate-to-vigorous intensities, no significant differences were 

found between the linear and nonlinear controllers in mean RMS tracking error (2.34 vs. 2.25 

bpm [L vs. NL], p=0.26) and average control signal power (51.7 vs. 60.8 × 10−4 m2/s2, p=0.16), 

but dispersion of the latter was substantially higher for NL (range 45.2 to 56.8 vs. 30.7 to 108.7 × 

10−4 m2/s2, L vs. NL). At low speed, RMS tracking errors were similar, but average control 

signal power was substantially and significantly higher for NL (28.1 vs. 138.7 × 10−4 m2/s2 [L vs. 

NL], p<0.001). The performance outcomes for linear and nonlinear control were not 

significantly different for moderate-to-vigorous intensities, but NL control was overly sensitive 

at low running speed. Accurate, stable and robust overall performance was achieved for all 16 

subjects with the linear controller.  
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Spiess and Neumeyer (2010) worked on an evaluation of R2 as an inadequate measure for 

nonlinear models in pharmacological and biochemical research: a Monte Carlo approach. The 

intensive simulation approach undermined previous observations and emphasized the extremely 

low performance of R2 as a basis for model validity and performance when applied to 

pharmacological/biochemical nonlinear data. With the 'true' model having up to 500 times more 

strength of evidence based on Akaike weights, this was only reflected in the third to fifth decimal 

place of R2. In addition, even the bias-corrected R2
adj exhibited an extreme bias to higher 

parameterized models. The bias-corrected AIC and also BIC performed significantly better in 

this respect. The study concluded that researchers and reviewers should be aware that R2 is 

inappropriate when used for demonstrating the performance or validity of a certain nonlinear 

model. It should ideally be expunged from scientific literature dealing with nonlinear model 

fitting or at least be supplemented with other methods such as AIC or BIC or used in context to 

other models in question. 

Methodology 

Regression Models 

Linear: 22110 XXY        … (1) 

Lin-Log: 22110 ln XXY        … (2) 

Polynomial: 
23

2

12110 XXXY       … (3) 

Inverse:   22110 1 XXY        … (4) 

 

Regression Analysis 

 

Regression analysis is a statistical technique that express mathematically the relationship 

between two or more quantitative variables such that one variable (the dependent variable) can 

be predicted from the other or others (independent variables). It is very useful in predicting or 

forecasting. It can also be used to examine the effects that some variables exert on others. It may 

be simple linear, multiple linear or non linear. 

 

However, the study concentrates on the multiple regression due to the nature of our data. 

 

Multiple Linear Regression 

If a regression model involves more than one explanatory variable, it is called a multiple 

regression model and is of the form 

 Y = 0 + 1X1 + 2X2 + ⋯ + kXk   … (5) 
Considering the case of only two independent variables as it agrees with the nature of the data 

for this study, Equation (6) is given: 

Yi = 0 + iX1i + 2X2i + ui    … (6) 

where Y is the response variable, X1 and X2 are the explanatory variables (or regressors), ui is the 

stochastic disturbance term, and i is the ith observation; in case the data are time series, the 

subscript t will denote the tth observation. Since the data are the form t ( t= 1,2,3,…., 15, the 

number years under study), then Equation (6) will now be written as 

Yt = 0 + iX1t + 2X2t + ut    … (7) 
when Y, X1, X2 are in deviation forms, then Equation (7) becomes  
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yt = 1x1t + 2x2t + ut        … (8) 

where 

 YYy
tt
 , t2t2t2

XXx  , t1t1t1
XXx   

 t22it1t
xˆxˆŷ   

 t22t11tttt
xˆxˆyŷye     … (9) 

Hence, the error sum of squares is given by; 
2

t22t11t

2

t
)xˆxˆy(e     … (10) 

Using the OLS technique, the estimate of the parameters is as follows: 

2

21

2

2

2

1

221

2

21

1
)xx(xx

yxxxxyxˆ



     … (11) 

2

21

2

2

2

1

1212

2

1

2
)xx(xx

yxxxyxxˆ



     … (12) 

and 22110
XˆXˆYˆ       … (13) 

However, given the sample size n, the totals x1, x2, y, the sums of squares 2

1
x , 2

2
x  and 

cross products x1x2, x1y and x2y, their respective sum of squares and cross products 

adjusted for means are obtained using the formula: 

n

)X(
X)XX(x

2

12

1

2

11

2

1


    … (14) 

n

)Y(
Y)YY(y

2

222 
     … (15) 

n

)X(
X)XX(x

2

22

2

2

2

2

2


    … (16) 

n

XX
XX)XX)(XX(xx 21

212121


  … (17) 

n

YX
YX)YY)(XX(yx 1

1111


   … (18) 

n

YX
YX)YY)(XX(yx 2

2222


   … (19) 

 

Coefficient of Determination 

The (multiple) coefficient of determination is given by 

 2

22112

y

yxˆyxˆ
R




     … (20) 

where x1, x2, y are in deviation form. The adjusted R2 written as 2R  is defined by 

 
kn

1n
)R1(1R 22




     … (21) 
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Table 1: ANOVA Table 

Source of variation Df SS MS 

Regression 2 2

t
ŷ  

2

ŷ 2

t


 

Error n – 3 2

t

2

t
ŷy   

3n

ŷ
y

2

t2

t



  

Total n – 1 2

t
y  

 

 

 Fcalculated = 

3n

ŷy
2

ŷ

2

t

2

t

2

t







    …  (22) 

  
EMS

RMS
      …  (23) 

 
2

t
yTSS         …  (24) 

yxˆyxˆŷRSS
2211

2

i
     …  (25) 

ESS = TSS – RSS = 
2

t

2

t
ŷy      …  (26) 

 

The nonlinear regression models; Lin-Log, Polynomial, and Inverse can follow the same 
procedure as employed in the linear model.  

Akaike Information Criterion (AIC) 

The Akaike’s information criterion AIC (Akaike, 1974) is a measure of the goodness of fit of an 

estimated statistical model and can also be used for model selection. Thus, the AIC is defined as; 

n

RSS
e

n

û
eAIC n

k22

i
n

k2




     
… (27) 

where k is the number of regressors (including the intercept) and n is the number of observations. 

For mathematical convenience, Equation (27) is written as; 




















n

RSS
ln

n

k2
)AICln(      … (28) 

where ln (AIC) = natural log of AIC and 
n

k2
 = penalty factor. 
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Schwarz Information Criterion (SIC) 

 

Schwarz Information Criterion SIC (Schwarz, 1978) is a measure of the goodness of fit of an 

estimated statistical model and can also be used for model selection. It is defined as 

n

RSS
n

n

u
nSIC n

k
i

n

k






2ˆ
     … (29) 

Transforming Equation (29) in natural logarithm form, it becomes (See Equation (30)); 











n

RSS
n

n

k
SIC ln)ln()ln(      …  (30) 

where )nln(
n

k
is the penalty factor.  

 
 

Hannan-Quinn Information Criterion (HQIC) 

The Hannan-Quinn Information Criterion HQIC (Hannan and Quinn, 1979) is a measure of the 

goodness of fit of an estimated statistical model and is often employed as a criterion for model 

selection. It is defined as 

 nk
n

RSS
nHQIC lnln2ln      … (31) 

Where n is the number of observations, k is the number of model parameters. RSS is the residual 

sum of squares that result from the statistical model. 

 

For model comparison, the model with the lowest AIC, SIC score is preferred. 

 

Data Analysis 

Data used for this study is secondary obtained from Nigeria bottling company plc, Owerri Plant 

Annual Report from 1999-2013. The regression models; Linear, Lin-Log, Polynomial, and 

Inverse were analyzed via e-view software. The data for the 15 selected years of budgeted profit, 

budgeted production and budgeted sales are shown in Table 2. 

 

Table 2: Budgeted Profit, Budgeted Production and Budgeted Sales 

Year Y   (₦’000) X1 

( ₦’000) 

X2 

( ₦’000) 

1999 500000 269100 2200000 

2000 550000 306900 1950000 

2001 600000 346500 1800000 

2002 790000 430500 1580000 
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2003 800000 507000 120000 

2004 880000 508635 1090000 

2005 900000 548895 920000 

2006 950000 5875520 918000 

2007 1000000 542800 851000 

2008 1100000 664900 801000 

2009 1500000 828000 780000 

2010 2000000 1074400 678000 

2011 2100000 1116600 550000 

2012 2300000 1248000 495000 

2013 2350000 1474000 448500 

Source: Nigerian bottling company plc, Annual Report (1999 – 2013)  

Y = Budgeted Profit (BPF) 

X1 = Budgeted Production (BPD) 

X2 = Budgeted Sales (BS) 

 

 

Table 3: Summary of Regression for Linear Model 

Dependent Variable: BPF   

Method: Least Squares   

Date: 08/26/18   Time: 13:07   

Sample: 1999 2013   

Included observations: 15   

     
     Variable Coefficient Std. Error t-Statistic Prob.   

     
     C 1955066. 317683.5 6.154133 0.0000 

BPD -0.001061 0.104093 -0.010197 0.9920 

BS -0.723860 0.239100 -3.027438 0.0105 

     
     R-squared 0.445785     Mean dependent var 1221333. 

Adjusted R-squared 0.353416     S.D. dependent var 653079.2 

S.E. of regression 525143.8     Akaike info criterion 29.35759 

Sum squared resid 3.31E+12     Schwarz criterion 29.49920 

Log likelihood -217.1819     Hannan-Quinn criter. 29.35608 

F-statistic 4.826129     Durbin-Watson stat 0.635389 

Prob(F-statistic) 0.028978    

     
     Source: E-view software 
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Table 4: Summary of Regression for Lin-Log Model 

Dependent Variable: BPF   

Method: Least Squares   

Date: 08/26/18   Time: 13:21   

Sample: 1999 2013   

Included observations: 15   

     
     Variable Coefficient Std. Error t-Statistic Prob.   

     
     C -1157112. 2986576. -0.387438 0.7052 

LOG(BPD) 218708.9 209196.4 1.045472 0.3164 

BS -0.563449 0.270291 -2.084602 0.0591 

     
     R-squared 0.492047     Mean dependent var 1221333. 

Adjusted R-squared 0.407388     S.D. dependent var 653079.2 

S.E. of regression 502748.7     Akaike info criterion 29.27043 

Sum squared resid 3.03E+12     Schwarz criterion 29.41204 

Log likelihood -216.5282     Hannan-Quinn criter. 29.26892 

F-statistic 5.812117     Durbin-Watson stat 0.636254 

Prob(F-statistic) 0.017177    

     
     Source: E-view software 

Table 5: Summary of Regression for Polynomial Model 

Dependent Variable: BPF   

Method: Least Squares   

Date: 08/26/18   Time: 13:23   

Sample: 1999 2013   

Included observations: 15   

     
     Variable Coefficient Std. Error t-Statistic Prob.   

     
     C -404745.6 117515.1 -3.444202 0.0055 

BPD 2.535798 0.115847 21.88914 0.0000 

BPD^2 -3.95E-07 1.79E-08 -22.11360 0.0000 

BS 0.106143 0.052733 2.012838 0.0693 

     
     R-squared 0.987808     Mean dependent var 1221333. 

Adjusted R-squared 0.984482     S.D. dependent var 653079.2 

S.E. of regression 81354.02     Akaike info criterion 25.67419 

Sum squared resid 7.28E+10     Schwarz criterion 25.86300 

Log likelihood -188.5564     Hannan-Quinn criter. 25.67218 

F-statistic 297.0658     Durbin-Watson stat 1.686317 

Prob(F-statistic) 0.000000    

     
     Source: E-view software 
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Table 6: Summary of Regression for Inverse Model 

Dependent Variable: BPF   

Method: Least Squares   

Date: 08/26/18   Time: 13:24   

Sample: 1999 2013   

Included observations: 15   

     
     Variable Coefficient Std. Error t-Statistic Prob.   

     
     C 2098921. 249953.6 8.397239 0.0000 

1/BPD -3.96E+11 2.07E+11 -1.910304 0.0803 

BS -0.189683 0.345823 -0.548498 0.5934 

     
     R-squared 0.575019     Mean dependent var 1221333. 

Adjusted R-squared 0.504189     S.D. dependent var 653079.2 

S.E. of regression 459858.1     Akaike info criterion 29.09208 

Sum squared resid 2.54E+12     Schwarz criterion 29.23369 

Log likelihood -215.1906     Hannan-Quinn criter. 29.09057 

F-statistic 8.118287     Durbin-Watson stat 0.547628 

Prob(F-statistic) 0.005891    

     
     Source: E-view software 

 

Discussion of Results 

Having carried out the analysis based on the linear and nonlinear regression models, the results 

are summarized in Table 7. 
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Table 7: Summary Result of the Linear and Nonlinear Regression Models  

Model Form AIC SIC HQIC R2 

Linear 29.35759 29.49920 29.35608 0.445785 

Lin-Log 29.27043 29.41204 29.26892 0.492047 

Polynomial 25.67419 25.86300 25.67218 0.987808 

Inverse 29.09208 29.23369 29.09057 0.575019 

 

Looking at the summarized results in Table 7, it can be observed that the polynomial regression 

model has the highest coefficient of determination (0.987808) with the lowest AIC (25.67419), 

SIC (25.86300), and HQIC (25.67218), which makes it the best model with respect to the data 

used in this study. The next to polynomial regression model is inverse model which has a 

coefficient of determination of 0.575019 with the AIC (29.09208), SIC (29.23369), and HQIC 

(29.09057). It is clear from the result that the linear regression model is the least performed 

model. 

Conclusion 

From the analysis, it can be concluded that the nonlinear models perform better than the linear 

model. However, in the overall goodness of fit assessment, the study concluded that the 

polynomial regression model performs far better than the other three regression models used in 

this study. Therefore, future researchers should look at a similar work by incorporating other 

nonlinear regression models like Double-Log and Log-Lin Regression models to compare 

results. It should be noted by future researchers that if Double-Log and Log-Lin Regression 

models are employed, then Quasi - R2 is needed instead of R2 as employed in this study. 
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